Metallophysics and Advanced Technologies Memaлoфis. новітні технол. Metallofiz. Noveishie Tekhnol. 2020, vol. 42, No. 9, pp. 1207–1215 https://doi.org/10.15407/mfint.42.09.1207 Reprints available directly from the publisher

PACS numbers: 71.20.Be, 73.30.+y, 73.40.Ns, 73.40.Sx, 75.50.Bb, 85.30.Hi

Вплив Карбону на властивості контакту метал-напівпровідник

В. О. Бурлаков, О. Є. Погорелов, О. В. Філатов

Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна

У роботі розглянуто вплив домішки Карбону, внесеної у наноплівку заліза, на електричні властивості системи метал-напівпровідник. Об'єктами дослідження є зразки на напівпровідникових підложжях *p*- та *n*-типів з 16-ти контактів діаметром 2 мм і товщиною до 100 нм, вісім з яких з чистого заліза і вісім із заліза, леґованого Карбоном. Показано, що при леґуванні заліза Карбоном на підложжі *n*-типу виникає випрямний контакт типу діода Шотткі, що пов'язано зі збільшенням роботи виходу з металу. Розраховано висоту потенціального бар'єра, що виникає за рахунок такого збільшення роботи виходу. Одержані у ході розрахунку результати пояснюють появу області з негативним диференціальним опором на вольтамперних характеристиках системи Fe\MgO\Fe при леґуванні одного шару феромагнетика Карбоном.

Ключові слова: домішка, леґування Карбоном, діод Шотткі, робота виходу, феромагнетик, напівпровідник.

The effect of a carbon dopant introduction into iron nanofilm on the electrical properties of a metal-semiconductor system is considered. The objects of study are the samples on a p- and n-types semiconductor substrates of 16 contacts with a diameter of 2 mm and a thickness of up to 100 nm, eight of which are from pure iron and eight—from iron doped with carbon. As shown, for doped iron on the n-type substrate, a rectifying contact such as a Schottky

Corresponding author: Viktor Oleksandrovych Burlakov E-mail: odinpwnzpacan@gmail.com

G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Citation: V. O. Burlakov, O. E. Pogorelov, and O. V. Filatov, Impact of Carbon on Properties of Metal–Semiconductor Contact, *Metallofiz. Noveishie Tekhnol.*, **42**, No. 9: 1207–1215 (2020) (in Ukrainian), DOI: 10.15407/mfint.42.09.1207.

diode occurs, which is associated with an increase in the work function of the metal. The height of a potential barrier arising due to this increase in the work function is calculated. The results obtained in the calculation explain the appearance of a region with negative differential resistance on the current–voltage characteristics of the Fe\MgO\Fe system when one layer of a ferromagnet is doped with carbon.

Key words: dopant, carbon doping, Schottky diode, work function, ferromagnetic, semiconductor.

(Отримано 20 березня 2020 р.; остаточн. варіант — 1 квітня 2020 р.)

1. ВСТУП

Виявлену на вольт-амперній характеристиці (ВАХ) МТЈ-системи Fe\MgO\Fe область з негативним диференційним опором (НДО), що є характерною для тунельного діода, у [1] пояснювали впливом провідної домішки на електронну структуру системи. Важливість застосування спільної роботи приладу з НДО разом з МТЈ розглянуто у [2] як засіб для підвищення тунельного магнетоопору такої системи. У теоретичній роботі [3] автори зазначали, що в таких системах це може статися за умов зниження рівня енергії Фермі (E_{F}) металу до рівня нижче середини забороненої зони діелектрика (E_G). У роботі [4] область з НДО на ВАХ в МТЈ-системі проявлялася завдяки введенню Карбону в один з інтерфейсів феромагнетик\діелектрик. Оскільки фізичну природу зниження сили струму за зростання напруги на ВАХ системи метал-діелектрик-метал за наявності домішки достеменно не встановлено, питання вимагало додаткового вивчення. Тому було поставлено задачу дослідити вплив Карбону на ВАХ і розташування рівня енергії Фермі металу. Одним з можливих шляхів вирішення такої задачі є порівняння властивостей чистого заліза і заліза, леґованого Карбоном, у контакті з напівпровідником р- та п-типу. У радіоелектроніці контакти металнапівпровідник використовують як зовнішні виводи напівпровідникових приладів і як швидкодійні діоди. Відповідно розрізняють невипрямний омічний контакт і випрямний контакт металнапівпровідник (діод Шотткі), названий бар'єром Шотткі (БШ).

Провідність невипрямного омічного контакту описується законом Ома. Випрямний контакт має нелінійну ВАХ, аналогічну ВАХ p-n-переходу [5]. Тип одержаного контакту визначають співвідношенням між роботою виходу електронів з напівпровідника і з металу, а також знаком і густиною заряду на напівпровідниковому підложжі. У разі випрямного контакту для напівпровідника *n*-типу робота виходу електронів з напівпровідника $A_{\text{нп-n}}$ повинна бути меншою роботи виходу електронів з металу $A_{\text{м}}$. Тоді рівень Фермі металу знаходиться нижче рівня Фермі у напівпровіднику і наповне-

ність зони провідності напівпровідника вища за заповнювання відповідних енергетичних рівнів металу. Для напівпровідника *p*-типу ситуація має зворотний характер, робота виходу електронів повинна бути більшою, ніж у металі.

Таким чином, порівнявши ВАХ контактів залізо та залізо + вуглець на напівпровідникових підложжях різного типу провідності, можна встановити вплив домішки (Карбону) на розташування рівня Фермі.

2. МЕТОДИКА І МАТЕРІАЛИ

В експерименті використовували напівпровідникові підложжя двох типів: КЕФ — монокристалічний кремній, леґований Фосфором — дана система має *n*-тип провідності; і КДБ — монокристалічний кремній, леґований Бором, система з яким має *p*-тип провідності. Перед установкою підложжя у камеру знімали окисний шар кремнію у плавиковій кислоті і промивали у дистильованій воді. Напорошення металевих контактних майданчиків проводили електронно-променевим методом в установці ВУП-5. Утворювали контактні майданчики діаметром 2 мм двох типів: з чистого заліза і за-

Рис. 1. Розташування на кремнієвих підложжях контактів заліза і заліза, леґованого Карбоном: *а* — схема, *б* — зразок після напорошення.

Fig. 1. Contacts of iron and iron doped with carbon on a silicon substrate: a—scheme, δ —sample after spraying.

ліза, леґованого Карбоном. Відстань між сусідніми майданчиками становила 3 мм. Напорошення елементів проводили наступним чином. На кремнієве підложжя накладали маску з нержавійної сталі, у якій зроблено 16 круглих отворів, як зображено на схемі рис. 1, *a*, два крайніх вертикальних ряди отворів (ліворуч і праворуч за схемою рис. 1, а) закривали суцільною маскою з металевої фолії і розміщували у вакуумній камері, де напорошували тонкий шар Карбону. Потім напорошували шар заліза товщиною 20-30 нм зі швидкістю напорошення 10–20 Å/хв і проводили 30-хвилинний відпал за температури 300°С для забезпечення дифузії Карбону у залізо. Як показали оцінки, у таких умовах дифузія Карбону у залізо на 6-8 порядків проходить швидше, ніж у Силіцій [6, 7]. Після цього знімали непрозорі маски з крайніх рядів контактів і напорошували залізо товщиною 80–100 нм. Підведення струму і зняття сигналу з заданої пари контактів здійснювали точково за допомогою підпружинених електричних зондів. Для встановлення наявності і характеру випрямних властивостей обраних пар контактів метал-напівпровідник пропускання струму через них під час одержання ВАХ здійснювали в обох напрямах.

3. РЕЗУЛЬТАТИ І ОБГОВОРЕННЯ

Вплив Карбону на контакт залізо\напівпровідник досліджували вимірюванням опору між певними парами контактів. На напівпровідниковому підложжі КДБ *p*-типу опір між різними парами контактів складав $\cong 100$ Ом незалежно від наявності Карбону і не змінювався внаслідок зміни напрямку протікання струму. На підложжі КЕФ з *n*типом провідності результати виміру опору деяких пар контактів наведено у табл. 1 (зміну напрямку струму, що протікав через відповідні пари контактів, умовно позначено, як – + та + –).

Одержані дані свідчать про те, що на підложжі з *n*-типом провідності опір для контактів з чистого заліза не змінюється зі зміною напрямку струму. Для контактів заліза, леґованого Карбоном, опір

$Fe -> KE\Phi -> Fe$		$Fe -> KE\Phi -> Fe + C$		$Fe+C->KE\Phi->Fe+C$	
-+	+-	-+	+-	-+	+-
110 Ом 96 Ом 339 Ом 519 Ом	110 Ом 96 Ом 337 Ом 503 Ом	3,0 кОм 8,9 кОм 4,1 кОм 3,1 кОм	6,0 кОм 10,8 кОм 4,4 кОм 3,6 кОм	4,5 кОм 7,7 кОм 28,8 кОм 13,0 кОм	6,3 кОм 13,3 кОм 33,0 кОм 23,0 кОм

TABLE 1. The resistance of contacts on the *n*-type substrate.

ТАБЛИЦЯ 1. Опір пар контактів на підложжі *п*-типу.

виявився на порядок вищим і залежав від напрямку струму. Це пов'язано з тим, що на інтерфейсі між металом і напівпровідником виникає потенціальний бар'єр ϕ , який дорівнює різниці роботи виходу електронів із метала та напівпровідника:

$$\varphi = A_{\rm M} - A_{\rm HII}. \tag{1}$$

Висоту цього бар'єра можна розрахувати з ВАХ одержаного контакту [8]. Значення напруги, коли експоненційна крива переходить у лінійну, буде висотою бар'єра. Типову ВАХ контактів заліза, леґованих Карбоном, на напівпровідниковому підложжі з *n*-типом провідності зображено на рис. 2.

З рисунка видно, що графік має експоненційний і асиметричний характер. Струм, який рухається з напівпровідника у метал (IV чверть), у 1,5–2 рази вищий за струм з металу в напівпровідник (І чверть) за аналогічних напруг. Для визначення напруги, за якої струм переходить з тунельного в омічний, побудовано залежність $\ln(I)$ від напруги (рис. 3).

Відповідно до методики, яку використовують для характеризації діода Шотткі, наведеній у роботі [8], аналізували ділянку ВАХ у діапазоні напруги від 0,3 В до φ , яка має лінійний характер у напівлогарифмічних координатах. Значення φ знаходили як напругу, за

Рис. 2. Вольт-амперна характеристика контакту Fe + C з напівпровідниковим підложжям *n*-типу.

Fig. 2. Current-voltage characteristics of Fe + C contact with n-type semiconductor substrate.

якої відбувається відхилення від експоненційної залежності ВАХ, що на рис. З відповідає значенню 1,9–2,0 В. Це пов'язано з тим, що при напрузі зсуву $eU > \varphi$, на електрони провідності перестає діяти потенціальний бар'єр і провідність починає підпорядковуватись закону Ома. Нахил лінійної ділянки кривої характеризується коефіцієнтом неідеальності *n*. Апроксимувавши одержану криву $\ln(I_s)$ у точку U = 0, визначали струм насичення I_s . Для аналітичного розрахунку висоти потенціального бар'єра φ , як і в [8], використовували наступну формулу:

$$\varphi = \ln\left(\frac{AT^2}{I_s}\right)\frac{nkT}{|e|},\tag{2}$$

де A — стала Річардсона, T — температура, I_s — струм насичення, n — коефіцієнт неідеальності, k — стала Больцмана, e — заряд електрона.

Сталу Річардсона розраховували за формулою:

$$A = 1, 2 \cdot 10^6 \left(\frac{m_e}{m_0}\right),\tag{3}$$

де m_e — ефективна маса електрона у металі, m_0 — маса вільного

Рис. 3. Логарифмічна характеристика струму від напруги для контакту Fe + C з напівпровідниковим підложжям *n*-типу.

Fig. 3. Logarithmic characteristic of voltage current for contact Fe + C with *n*-type semiconductor substrate.

електрона.

Струм насичення і коефіцієнт неідеальності одержують з параметрів графіка на рис. З і вони дорівнюють $I_s = 40$ нА, n = 1,9. Експеримент проводився за кімнатної температури, ефективна маса для електрона у залізі взята з першопринципних розрахунків [9] $m_x =$ $= 1,27m_0$. Підставивши ці дані в (2), одержали висоту потенціального бар'єра: $\varphi = 2,0$ еВ. За відомими φ і роботою виходу електронів у напівпровідниковому підложжі КЕФ ($A_{\rm нп} = 4,6$ еВ) розраховували роботу виходу електронів у залізі, леґованому Карбоном $A_{\rm M}$:

$$A_{\rm M} = A_{\rm HII} + \varphi. \tag{4}$$

Розрахована робота виходу $A_{\rm M} = 6,6$ eB для Fe + C більша за роботу виходу $A_{\rm Fe} = 4,4$ eB у чистому залізі на 2,2 eB.

У результаті зонну структуру одержаної системи можна схема-

Рис. 4. Зонна структура досліджуваної системи: вихідних матеріалів (*a*), одержаного контакту (б); $A_{\rm M}, A_{\rm HH}$ — робота виходу електронів з металу і напівпровідника відповідно, E_F — енергія Фермі, E_V — верхня межа валентної зони, E_c — зона провідності, E_0 — енергія вільних електронів, ψ — робота виходу внутрішньої термоемісії електронів у напівпровідник, ϕ висота потенціального бар'єра.

Fig. 4. Band structure of the system: before contact (a), after contact (δ); $A_{_{\rm M}}$, $A_{_{\rm HII}}$ —work function of metals and semiconductors, respectively, E_F —Fermi energy, E_V —valence band, E_c —conduction band, E_0 —free electrons energy, ψ —the work of the thermionic emission in the semiconductor, φ —potential barrier height.

тично подати наступним чином (рис. 4).

Тому в роботі [4] в МТЈ-системі при леґуванні одного із шарів заліза Карбоном рівень Фермі леґованого контакту розташовується на 2,2 еВ нижче рівня Фермі контакту з чистого заліза і у результаті на ВАХ одержаної системи за напруги у 2,2 В проявляється область з НДО. Це пов'язано з тим, що при напрузі у 2,2 В рівні тунелювальних електронів зміщуються в області меншої бар'єрної прозорості, що стає безпосередньою причиною зменшення тунельного струму. Одержані результати свідчать про те, що леґування Карбоном підвищує роботу виходу.

4. ВИСНОВКИ

Показано, що наявність Карбону на інтерфейсі залізо-напівпровідник збільшує роботу виходу з металу і розташування рівня енергії Фермі в системі Fe\MgO\(Fe + C). У випадку контакту з напівпровідником *n*-типу виникає потенціальний бар'єр висотою $\varphi = 2,0$ еВ. Внаслідок цього контакт з омічною провідністю, одержаний для чистого заліза, за наявності Карбону перетворюється у випрямний контакт метал-напівпровідник, характерний для діода Шотткі. Одержані результати можуть пояснити природу виникнення НДО у системі Fe\MgO\(Fe + C).

Таким чином, надається можливість керувати електрофізичними властивостями системи метал\діелектрик\метал, якщо використовувати матеріали з різними електронними характеристиками.

Автори вважають за приємне висловити щиру подяку старшому науковому співробітнику, кандидату фізико-математичних наук Є. І. Богданову за надані кремнієві підложжя та корисні поради щодо технології їх підготовки.

ЦИТОВАНА ЛІТЕРАТУРА—REFERENCES

- 1. A. Pogorelov, A. Filatov, and Ye. Pogoryelov, *phys. status solidi* (b), **251**, Iss. 1: 172 (2014).
- 2. T. Uemura, S. Honma, T. Marukame, and M. Yamamoto, *Jpn. J. Appl. Phys.*, 43, No. 1A/B: L 44 (2003).
- 3. T. A. Khachaturova, M. A. Belogolovsky, and A. I. Khachaturov, *Metallofiz*. *Noveishie Tekhnol.*, **30**, No. 7: 899 (2008) (in Russian).
- 4. V. O. Burlakov, O. E. Pogorelov, and O. V. Filatov, *Metallofiz*. *Noveishie Tekhnol.*, **42**, No. 7: 919 (2020).
- 5. J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, *Schottky Diodes in: Semiconductor Power Devices*, p. 271.
- 6. P. Grinchuk, H. M. Abuhimd, S. Fisenko, and Yu. Khodyko, J. Eng. Phys. Thermophys., 90: 1162 (2017).
- 7. L. N. Larikov and V. I. Isaychev, Diffuziya v Metallakh [Diffusion in Metals]

ВПЛИВ КАРБОНУ НА ВЛАСТИВОСТІ КОНТАКТУ МЕТАЛ-НАПІВПРОВІДНИК 1215

- (Kyiv: Naukova Dumka: 1987) (in Russian). M. V. Dorokhin and A. V. Zdoroveyshhev, *Diod Shottki na Osnove GaAs:* 8. Tekhnologiya Polucheniya i Diagnostika [Schottky Diode Based on GaAs: Production Technology and Diagnostics] (Nizhniy Novgorod: 2013) (in Russian).
- A. H. Davis and J. M. MacLaren, J. Appl. Phys., 87, No. 9: 5224 (2000). 9.