PACS numbers: 61.05.cp, 61.43.Gt, 61.46.Df, 81.07.Wx, 81.10.-h

Відновлення розчину солей металів Со, Си, Fe, Mo i Ni

В. М. Надутов, В. З. Войнаш, А. О. Перекос, В. П. Залуцький

Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна

Розчин солей Феруму, Ніколу, Кобальту, Купруму та Молібдену (Fe₂C₂O₄·2H₂O, Ni₂C₂O₄·2H₂O, Co₂C₂O₄·2H₂O, Cu₂C₂O₄·H₂O, (NH₄)₂MoO₃) відновлювався у водневмісній атмосфері Ar + 5 ат. % H₂ за температур 300, 400, 600, 800, 1000°С протягом 1 години та за 1000°С протягом 2 годин. Також порошок, відновлений за 1000°С протягом 2 годин, відпалювався в Арґоні за температури 1200°С протягом 2 годин. Методом рентґенівського фазового аналізу визначено фазовий склад порошка на кожному етапі відновлення.

Ключові слова: високодисперсні порошки, багатокомпонентні стопи, відновлення, рентґенівський фазовий аналіз.

The solution of salts of iron, nickel, cobalt, copper and molybdenum (Fe₂C₂O₄·2H₂O, Ni₂C₂O₄·2H₂O, Co₂C₂O₄·2H₂O, Cu₂C₂O₄·H₂O, (NH₄)₂MoO₃) reduces in hydrogen containing atmosphere of Ar + 5 at.% H₂ at temperatures of 300, 400, 600, 800, 1000°C for 1 hour and at 1000°C for 2 hours. In addition, the powder, reduced at 1000°C for 2 hours, anneals in argon at 1200°C for 2 hours. By X-ray phase analyses, phase content of powders is determined at every stage of reduction.

Key words: ultra-fine powders, multi-component alloys, reduction, X-ray phase analyses.

(Отримано 26 травня 2020 р.)

Corresponding author: Viktor Zyhfridovych Voynash E-mail: voynash@gmail.com

G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Citation: V. M. Nadutov, V. Z. Voynash, A. O. Perekos, and V. P. Zalutskiy, Reduction of Co, Cu, Fe, Mo and Ni Metal Salts Solution, *Metallofiz. Noveishie Tekhnol.*, **42**, No. 10: 1363–1372 (2020) (in Ukrainian), DOI: 10.15407/mfint.42.10.1363.

1363

1. ВСТУП

Широке використання дисперсних систем, зокрема металічних, у народному господарстві: у медицині та сільському господарстві, інформаційних технологіях тощо викликало інтерес до досліджень у цій галузі [1–3]. Властивості дисперсних систем визначаються багатьма факторами: фазовим та хемічним складами, розмірами елементів системи, станом поверхні тощо. Ці фактори визначаються вихідними матеріялами, технологією одержання системи та наступними термічною та механічною обробками. У зв'язку з цим розробка нових та удосконалення існуючих методів синтезу дисперсних систем є актуальним завданням.

Одним з методів одержання дисперсних систем, що містять перехідні метали, є відновлення солей Гідроґеном до металу. Наприклад, цей метод використовували для синтезу магнетних дисперсних порошків авторами робіт [4–6]. Останнім часом, зважаючи на велику зацікавленість у багатокомпонентних стопах, у нашій роботі представлена спроба одержати цим методом дисперсну систему з більшим числом компонент, наприклад, дисперсний еквіатомний стоп з п'яти компонент.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Для одержання дисперсних металічних систем часто використовують солі органічних кислот, серед них оксалати (солі щавлевої кислоти). Вихідними матеріялами для синтезу багатокомпонентної дисперсної системи вибрано оксалати металів: Феруму, Ніколу, Кобальту та Купруму (Fe₂C₂O₄·2H₂O, Ni₂C₂O₄·2H₂O, Co₂C₂O₄·2H₂O, Cu₂C₂O₄·H₂O). За джерело Молібдену, який не утворює оксалату, вибрано молібдат амонію ((NH₄)₂MoO₃). Вибір також визначався розчинністю цих солей у воді, легкістю розкладання на оксиди та відновлюваністю цих оксидів Гідроґеном до металу.

Аналогічно стопленню, тобто перемішуванню речовин у рідкому стані на атомному рівні, використовували перемішування розчинених у дистильованій воді солей на молекулярному рівні. Після розчинення у воді солей їхні розчини змішували. Кількість солей підбирали так, щоб склад суміші був еквімолярний. Воду випаровували та сушили суміш у сушильній шафі. Приготований таким чином порошок слугував вихідним матеріялом для відновлення в атмосфері Ar + 5 ат.% H₂. Відновлення проводили за температур 300, 400, 600, 800, 1000°С протягом 1 години та 1000°С протягом 2 годин. Також відновлений протягом 2 годин за 1000°С порошок відпалили в арґоні за 1200°С протягом 2 годин.

Фазовий склад та кристалічну структуру порошків вивчали за до-

помогою автоматизованого рентґенівського дифрактометра ДРОН 3.0 з кобальтовим анодом за кімнатної температури.

3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Вихідна суміш (осад оксалатів та молібдату амонію) у процесі випаровування та сушіння частково кристалізувалася, про що свідчать піки поверх гало на дифрактограмі вихідного порошку (рис. 1). Лінії на дифрактограмі збігаються з головними лініями оксалатів. Крива, що згладжує, на дифрактограмі показує положення гало, які збігаються з положеннями ліній відповідних оксалатів та оксидів, які знаходяться у аморфному стані.

Фазовий аналіз порошка, одержаного відновленням за температури 300°С протягом 1 години, показав, що Купрум відновився до металу вже за цієї температури. Дифрактограму цього порошку наведено на рис. 2. Оксалати Феруму, Ніколу та Кобальту розклалися, з'явились оксиди цих металів. Лінії від з'єднань Молібдену не спостерігаються, ймовірно оксиди Молібдену знаходяться в аморфному стані. Широкі лінії вказують на велику дисперсність Купруму та оксидів. За оцінкою по формулі Селякова–Шеррера розміри цих частинок становлять приблизно 25–30 нм.

Після відновлення за температури 400°С протягом 1 години крім металічного Купруму в порошку з'явилася γ-(Fe, Ni, Co)-фаза твердий розчин Феруму, Кобальту та Ніколу (рис. 3). Тобто за цієї температури відновились оксиди Феруму, Ніколу та Кобальту. Ці метали утворили стоп з гранецентрованою ґратницею — γ-(Fe, Ni, Co)-фазу. Частина Ніколу могла розчинитись у Купрумі, про що свідчить зменшення параметра ґратниці розчину Cu.

Рис. 1. Дифрактограма вихідного порошку. **Fig. 1.** XRD patterns of the source powder.

Fig. 2. XRD patterns of powder, reduced at 300 $^\circ \mathrm{C}$ for 1 hour.

Так, якщо параметр ґратниці розчину Си після відновлення за 300° С складав 0,3632 нм, то після відновлення за температури 400° С — 0,3609 нм. Параметр ґратниці Ніколу (0,35238 нм) менший параметра ґратниці Купруму (0,36320 нм), тому внаслідок розчинення Ніколу в Купрумі параметр ґратниці розчину Си зменшується [7]. У разі розкладання оксалату Феруму у безкисневій атмосфері утворюється оксид FeO. Але, згідно фазової діаграми Fe–O цей оксид за температур, нижчих 570°С, нестійкий і розпадається за формулою:

$$4 \cdot \text{FeO} \rightarrow \text{Fe} + \text{Fe}_3 O_4$$
.

Рис. 3. Дифрактограма порошку, відновленого за 400°С протягом 1 години. **Fig. 3.** XRD patterns of powder, reduced at 400°С for 1 hour.

Тому у порошку присутній магнетит (Fe_3O_4).

За цієї температури утворюються також кристалики оксиду Молібдену MoO_3 , частина яких відновлюється до оксиду MoO_2 . Тому на дифрактограмі спостерігаються як лінії оксиду MoO_3 , так і лінії MoO_2 . За оцінкою по Селякову–Шерреру розміри частинок MoO_2 складають 25 нм. Зменшення ширини ліній на дифрактограмі, порівняно з попереднім відновленням, свідчить про збільшення розмірів кристалітів у порошку. Оцінити розміри частинок важко, оскільки лінії розчину Си та γ -фаз перекриваються.

Порівняно з відновленням за температури 400°С, відновлення за температури 600°С не призвело до якісних змін у фазовій структурі порошка (рис. 4), спостерігаються тільки кількісні зміни. Зменшення ширини ліній вказує на збільшення розмірів частинок металів та оксидів. Збільшення піку γ -(Fe, Ni, Co)-фази, порівняно з піком розчину Cu, свідчить про інтенсивне відновлення Феруму, Ніколу та Кобальту за цієї температури, водночас як відновлення Купруму, як було показано вище, відбулося за нижчої температури. Відновлення оксиду Феруму Fe₃O₄ привело до зменшення інтенсивності його піків на дифрактограмах. Відбувається ріст фази MoO₂ за рахунок оксиду MoO₃.

Основною відмінністю відновлення за температури 800°С протягом 1 години від попереднього експерименту є відновлення Молібдену до металу (рис. 5), про що свідчить поява лінії Молібдену на дифрактограмі. Лінії γ-(Fe, Ni, Co) і твердого розчину на основі Cu зблизилися настільки, що сприймаються як одна лінія, але зі збільшенням видно, що лінія має дві вершини. Таке зближення ліній свідчить про взаєморозчинність цих фаз.

Рис. 4. Дифрактограма порошку, відновленого за 600°С протягом 1 години. **Fig. 4.** XRD patterns of powder, reduced at 600°С for 1 hour.

Присутність неідентифікованих ліній, ймовірно, відображає наявність у порошку інтерметалідів, утворені Молібденом з одного

Рис. 5. Дифрактограма порошку, відновленого за 800°С протягом 1 години. На вставці показано збільшені лінії γ-(Fe, Ni, Co) та розчину Си фаз.

Fig. 5. XRD patterns of powder, reduced at 800°C for 1 hour, with inset showing magnified lines of γ -(Fe, Ni, Co) and Cu solution phases.

Рис. 6. Дифрактограма порошку, відновленого за 1000°С протягом 1 години. На вставці показано збільшену лінію γ-(Fe, Ni, Co, Cu) фази.

Fig. 6. XRD patterns of powder, reduced at 1000°C for 1 hour, with inset showing magnified line of γ -(Fe, Ni, Co, Cu) phase.

Рис. 7. Дифрактограма порошку, відновленого за 1000°С протягом 2 годин.

Fig. 7. XRD patterns of powder, reduced at 1000° C for 2 hours.

боку та Ферумом, Ніколем та Кобальтом з другого. Відновлені за температури 1000°С протягом 1 години та 2-х годин порошки мають ідентичний фазовий склад. Найбільшу кількість у складі порошка становить (основна фаза) γ-(Fe, Ni, Co, Cu). Також у малій кількості присутні Молібден та інтерметалідні фази.

Динаміка змін фазового складу порошків (рис. 6–8), що досліджуються, наступна. Основна зміна у дифракційній картині — поступове зникнення ліній Молібдену. По мірі зменшення інтенсивності молібденових ліній росте інтенсивність лінії на куті 43,95°. Така зміна, напевно, викликана дифузією атомів Феруму, Кобальту та

Рис. 8. Дифрактограма порошку, відновленого за 1000°С протягом 2 годин та відпаленого в Арґоні за 1200°С протягом 2 годин.

Fig. 8. XRD patterns of powder reduced at 1000° C for 2 hours and annealed in argon at 1200° C for 2 hours.

ТАБЛИЦЯ 1. Параметри ґратниці та ОКР (областей когерентного розсіювання) фаз.

Фаза	γ		α-Cu		Mo	
Порошок (зразок)	Параметр ґратниці, нм	ОКР, нм	Параметр ґратниці, нм	ОКР, нм	Параметр ґратниці, нм	ОКР, нм
300°С, 1 год	_	-	0,3621	21,6	_	_
400°С, 1 год	0,3555	_	0,3610	_	_	_
600°С, 1 год	0,3550	_	0,3611	_	_	_
800°С, 1 год	0,3587	_	0,3607	_	0,3148	23
1000°С, 1 год	0,3600	32	—	—	0,3148	24
1000°С, 2 год	0,3602	31	—	—	0,3148	25
1200°С, 2 год	0,3610	30	_	_	_	_

TABLE 1. Phase lattice parameters and CSRs (coherent scattering region).

Ніколу у Молібден і фазовим переходом з Мо-фази ОЦК у кілька інтерметалідних фаз типу Mo_x (Fe, Ni, Co)_y, які не вдається ідентифікувати.

На жаль, наявне обладнання не дозволяло проводити відновлення за температур вищих 1000°С, хоча динаміка зміни фазового складу вказувала на доцільність збільшення температури для подальшої гомогенізації системи. З другого боку, так як всі елементи відновилися до металу, подальшу гомогенізацію не обов'язково проводити у водневмісній атмосфері, тому для більшої гомогенізації провели відпал порошка, відновленого за температури 1000°С протягом 2 годин, за температури 1200°С в Арґоні. Дифрактограму цього порошку наведено на рис. 8.

Про відтік Феруму, Кобальту та Ніколу з γ-фази свідчить поступове збільшення параметра ґратниці γ-фази, викликане зростанням долі Купруму у γ-фазі. Параметр ґратниці γ-фази у кінцевому порошку дорівнює 0,3610 нм.

Характеристики фаз, що вдалося вилучити з дифрактограм, наведено у табл. 1.

4. ВИСНОВКИ

1. Методом відновлення металів з їх солей одержано багатокомпонентну високодисперсну металічну систему CoCuFeMoNi.

2. Методом рентґенівського фазового аналізу визначено:

а) після відновлення оксидів за низьких температур (до 800°С) спостерігаються такі металічні фази: дві ГЦК-фази Си та γ-(Fe, Ni, Co) і ОЦК-Мо;

б) у разі відпалу за температури 1000°С ГЦК-фази Си та γ-(Fe, Ni, Co) взаєморозчиняються, утворюючи одну ΓЦК-фазу γ-(Fe, Ni, Co, Cu);

в) у разі відпалу за температур, вищих 1000°С, Мо, взаємодіючи з γ-(Fe, Ni, Co), утворює інтерметалічні сполуки.

3. Порошок, одержаний відновленням еквімолярного складу солей Феруму, Кобальту та Ніколу, Купруму та Молібдену за 1000°С протягом 2 годин та відпалений в аргоні за 1200°С протягом 2 годин, складається з твердого розчину ГЦК γ -(Fe, Ni, Co, Cu)-фази та кількох інтерметалідів типу Mo_x(Fe, Ni, Co)_y.

Роботу виконано в рамках теми «Закономірності формування твердих розчинів та інтерметалідних фаз у багатокомпонентних металічних системах в умовах дії термосилових обробок і в результаті фазових перетворень» (КПКВК 6541030).

ЦИТОВАНА ЛІТЕРАТУРА

- 1. И. Д. Морохов, Л. И. Трусов, С. П. Чижик, Ультрадисперсные металлические среды (Москва: Атомиздат: 1977).
- 2. А. П. Шпак, Ю. А. Куницкий, В. Л. Карбовский, Кластерные и наноструктурные материалы (Киев: Академпериодика: 2001).
- 3. А. И. Гусев, А. А. Ремпель, *Нанокристаллические материалы* (Москва: Физматгиз: 2001).
- 4. Н. Ф. Кущевская, А. Е. Перекос, И. В. Уварова, В. З. Войнаш,
 Т. В. Ефимова, В. П. Залуцкий, Э. В. Польшин, А. Е. Кущевский,
 Н. Д. Рудь, *Металлофиз. новейшие технол.*, 30, № 9: 1259 (2008).
- 5. Н. Ф. Кущевская, И. В. Уварова, А. И. Олешко, *Наноструктурное материаловедение*, № 2: 19 (2005).
- 6. Н. Ф. Кущевская, Порошковая металлургия, № 3/4: 111 (1999).
- О. М. Барабаш, Ю. Н. Коваль, Кристаллическая структура металлов и сплавов (Киев: Наукова думка: 1986).

REFERENCES

- 1. I. D. Morokhov, L. I. Trusov, and S. P. Chizhik, *Ul'tradispersnye Metallicheskie Sredy* [Ultrafine Metallic Media] (Moscow: Atomizdat: 1977) (in Russian).
- 2. A. P. Shpak, Yu. A. Kunitskiy, and V. L. Karbovskiy, *Klasternye i Nanostrukturnye Materialy* [Cluster and Nanostructured Materials] (Kyiv: Akademperiodika: 2001) (in Russian).
- 3. A. I. Gusev and A. A. Rempel', *Nanokristallicheskie Materialy* [Nanocrystalline Materials] (Moscow: Fizmatgiz: 2001) (in Russian).
- 4. N. F. Kushchevskaya, A. E. Perekos, I. V. Uvarova, V. Z. Voynash, T. V. Efimova, V. P. Zalutskiy, E. V. Pol'shin, A. E. Kushchevskiy, and N. D. Rud', *Metallofiz. Noveishie Tekhnol.*, **30**, No. 9: 1259 (2008) (in Russian).
- 5. N. F. Kushchevskaya, I. V. Uvarova, and A. I. Oleshko, *Nanostrukturnoe Materialovedenie*, No. 2: 19 (2005) (in Russian).
- 6. N. F. Kushchevskaya, Poroshkovaya Metallurgiya, No. 3/4: 111 (1999)

1372 В. М. НАДУТОВ, В. З. ВОЙНАШ, А. О. ПЕРЕКОС, В. П. ЗАЛУЦЬКИЙ

(in Russian).

 O. M. Barabash and Yu. N. Koval', Kristallicheskaya Struktura Metallov i Splavov [Crystal Structure of Metals and Alloys] (Kyiv: Naukova Dumka: 1986) (in Russian).