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The problem of quantum particle in infinitely deep potential pit with an in-
ternal potential barrier of finite height is solved. The solution is performed
in a simple algorithmic approach, which allows you to use the result in the
study of semiconductor nanostructures. The real heterostructure corre-
sponding to this model should look like thin layer of wideband semiconductor
placed between two slightly thicker layers of narrowband semiconductor. To
ensure the ‘infinite depth’ of the potential pit, layers of conductor must be
applied to the outer side surfaces of the triple semiconductor heterostructure
and negative electric potential must be applied. Another option for the prac-
tical implementation of the model can be done by placing two electrons in one
potential pit. In this case, the pit is a local space, at the boundary of which
negative electric potential is applied. The internal potential barrier arises
due to the Coulomb interaction of electrons. An example of such a structure
is a nanopore on the surface, or in the volume of a metal sample.

Key words: quantum particle, potential pit, heterostructure, potential barri-
er.

Posp’sa3aH0 3a7auy Ipo KBAHTOBY YACTUHKY B HECKiHUEHHO TJIMOOKi# ImoTeH-
MiAAbHIN AMi 3 BHYTPIIIHIM HOTEHIiAJILHUM Oap’epoM CKiHUEHOI BUCOTH.
P03B’A30K BUKOHAHO B IIPOCTOMY aJITOPUTMIUHOMY IIiAXOMi, 1[0 Ja€ 3MOTY BU-
KOPHCTOBYBATHU OJEPXKAHUY Pe3yIbTaT B JOCTiAKeHHAX HAIliBIIPOBIIHUKOBUX
HAHOCTPYKTYp. PeajibHa reTepocTPyKTypa, AKa BifmoBimae mpomMy MOeJIo,
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MOBMHHA BUTJIANATH SK TOHKHH IIap IMIHPOKO30HHOIO HAIliBIPOBiAHUKA,
BMIiIl[eHUH MiK JBOMA OEII0 TOBIMMU IIapaM{ BY3bKO30HHOT'O HAIIiBIPOBiA-
HuKa. s 3abe3neueHHA «HECKiHUEHHOI I'IMOMHM» HOTEHIIAJBHOI AMH Ha
30BHIITHI 00KOBi MOBEPXHi MOTPifiHOI HAMiBIPOBiMIHUKOBOI TeTEPOCTPYKTYPU
HeoOXiHO HaHeCTH IIapu IMPOBigHMKA i mojgaTu Bix’ eMHUI eJIeKTPUUYHUN 10-
TeHIiAJ. [HIIMi BapigdHT OPaAaKTHUYHOI peasisalrii MOIesro MOMKHA 3TiHCHUTU
PO3MiCTHBIIIM ABa €JIEKTPOHU B OMHiM HMOTEHIiANBbHiN aMi. B mbomy BUIagxky
AMAa ABJISAE cOO00 JIOKAJBLHUM IIPOCTip, HA MEXi SKOro MONAEThbC Bif e MHUM
eJIeKTPUYHUY MOTEeHITiAa. BHYTpiHii noTeunisapumii 6ap’ep BUHNKAE Uepes
KynonoBy B3aemogiio eneKTpoHiB. IIpuKaagomM Takol CTPYKTYpPH € HaHOIIOpa
Ha moBepxHi a6o B 06’eMi MeTaIeBOTo 3pasKa.

KnarouoBi ciioBa: KBaHTOBAa YaCTUHKA, MOTEHIIAIbHA sIMAa, TeTEPOCTPYKTYPA,
MMOTEeHIiANBHUI 6ap’ep.
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1.INTRODUCTION

Achievements and needs of modern technologies determine the leading
topical direction of development of research in metal physics and semi-
conductor physics as the study of the properties of low-dimensional
structures (nanostructures) and the development of scientifically
sound means of their synthesis [1, 2]. Modern experimental methods
provide the possibility of creating porous structures single-crystal lay-
ers [3, 4] and multilayer heterostructures [5, 6]. The thickness of the
layers in such structures, or the characteristic pore size, is from one to
ten nanometres, which corresponds to the de Broglie wavelength of the
charge carriers|[7, 8].

From the point of view of the physical approach, it provides means of
studying and using the fundamental phenomena caused by the manifes-
tations of corpuscular-wave dualism of charge carriers. These include, in
particular, such dimensional quantum effects as quantization of energy
and momentum of charge carriers in thin layers of semiconductor heter-
ostructures [9], resonant passage of charge carriers through them [10].
Quantization, which is due to the spatial localization in nanostructures,
including nanopores formed on the surface and in the volume of metal
conductors, qualitatively changes the energy spectrum of charge carriers
and quasiparticles; forms specific properties of specific metal and semi-
conductor heterostructures [11, 12]. Thus, the controlled change of ge-
ometric dimensions and configuration of nanoobjects and nanostruc-
tures makes it possible to determine and shape the physical properties of
semiconductor devices [13, 14]. The implementation of these capabilities
requires both advanced experimental methods [15, 16] and effective the-
oretical approaches to the calculation and design of metal and semicon-
ductor nanostructures with certain properties[17, 18].
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Typical dimensions of metal and semiconductor objects and struc-
tures used in modern micro- and nanoelectronics are in the range from
one hundred to one nanometre units [19, 20]. From the point of view of
subatomic physics, such dimensions fall beyond the fundamental limit
of linear scale, which determines the transition from the classical
physical model of state description to quantum. This reduction in the
size of physical objects and systems changes all their properties and
characteristics at a qualitative level [21]. The description of the state
at the level of averaging over a large number of individual parts of sin-
gle macroscopic system is inferior to the quantum approach of the
probabilistic description of the state of single nanoobject.

Quantum properties and effects determine the unique physical char-
acteristics of the so-called heterostructures, i.e., artificial periodic
layered formations [22]. Usually, individual layers of heterostructures
have the thickness of about nanometres [23]. Conscious and predicted
by modelling the formation of layered heterostructures makes it possi-
ble to obtain the required energy spectrum of charge carriers. In addi-
tion, recent research in metal physics is aimed at developing technolo-
gies for the deposition of quantum metal nanoparticles (Ni, Pd, Cu,
Ag, Au) on the surface of semiconductors, as well as establishing the
functional properties of semiconductors and ceramics doped with met-
als to high concentrations (Zn, S, La, Eu) [24—26].

The description of nanoobjects and nanostructures by means of
mathematics and theoretical physics is based entirely on the funda-
mental principles of quantum mechanics, using a wide range of model-
ling and computing apparatus of modern mathematics. In the most
general approach, the calculation of the electronic states of nanostruc-
tures should be performed as a solution of the corresponding three-
dimensional problem of the structure of energy zones. Such problems
are usually not suitable for direct analytical solution, they have devel-
oped effective numerical methods for computer calculation of quan-
tum states in nanostructures. At the fundamental physical level, these
methods are based on microscopic models of strong bonds, or pseudo-
potentials [27].

For some specific cases, approximate methods are successfully used:
effective mass (for the case of simple energy zones); effective Hamil-
tonian (for degenerate energy zones); smooth envelopes (for multi-zone
model) [28, 29].

In approximate methods, for each layer of the heterostructure, the
solution is found separately as a linear combination of independent so-
lutions of the corresponding Schridinger problem. The complete solu-
tion for the heterostructure is written as the superposition of the solu-
tions for the individual layers with cross-linking. To perform cross-
linking, the boundary conditions for the wave functions of charge car-
riers and their first derivatives at the boundaries of the heterostruc-
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ture layers are formulated.

The approximate effective mass method allows to calculate the ener-
gy spectrum and probabilities of quantum states of charge carriers us-
ing the stationary Schriodinger equation [30]. In this case, the motion
of the charge carriers is considered one-dimensional and occurs in di-
rections perpendicular to the planes of the heterostructure.

The article proposes to solve the problem of quantum particle in infi-
nitely deep potential pit with internal potential barrier of finite height.

2. STATEMENT OF THE PROBLEM

The problems of metal quantum particle in infinitely deep rectangular
potential pit, of tunnelling quantum particle through a potential bar-
rier of finite height, are widely known, and their solutions are stand-
ard examples in textbooks and manuals [31].

The logical continuation of the problem of tunnelling metal quan-
tum particle through a potential barrier of finite height is the problem
of potential relief with two or three barriers. In fact, these are prob-
lems of a single or double potential pit of finite depth, separated from
space with zero potential energy by barriers of finite thickness.

As original part of the study, we solve the model problem of quan-
tum particle in infinitely deep potential pit with internal potential
barrier of finite height (Fig. 1).

3. THEORETICAL SOLUTION OF THE PROBLEM

The dependence of the potential energy U(x) of quantum particle on the
coordinate is represented as a system:

40, x < —a /2,

0,-a/2<x<a/?2,
U(x) = 1
=1y, _5/2<x<5/2 )

+0, x 2 a /2,

where Uy is the height of the potential barrier, a is the width of the po-
tential well, 6 is the width of the potential barrier.

Let’s solve the Schrodinger problem for the left part of the potential
pit.

The stationary Schrodinger equation has the form:

d’y,(x) L 2mE, _
dx? R:

where yi(x) is the wave function of the particle in the left part of the

0, (2)
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fi is
Planck’s table has been modified. We can use one boundary condition:

v,(-a /2)=0. (3
In order to demonstrate the possibilities of the general approach, we

solve the problem by the method of characteristic equation. In this
case, the general solution is:

y,(x) = A, exp (%,/ZmElxj + B, exp (é,/szlxj, (4)

where A;, B; are integration constants. After substitution in the bound-
ary condition (3) we can relate the values of the integration constants:

B, =-A exp (—%1/2mE1J.

The wave function of the particle in the left part of the pit can now
be written as follows:

v, (x) = A {exp (%JZmElxj —exp (—%«/2mE1(x + a)ﬂ . (5)

U(x)

® ®

-6/2 8/2 x
-a/2 0 a/2

w

Fig. 1. Potential energy profile: a combination of an infinitely deep potential
well and a potential barrier of finite height.
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The wave function of quantum particle for the right part of poten-
tial pit is obtained in a similar way. It will look like:

y,(x) = A, {exp (%JZmEﬁJ — exp (—%\/2771532 (x+ a)ﬂ s (6)

where A, is the integration constant, E; is particle energy.

Solve the Schriodinger problem for quantum particle in the central
part of a potential pit.

For the case when the energy of the particle E is less than the height
of the potential barrier Uy, the Schrodinger equation has the form:

Py(x)  2mU, - E)
dx? K?

where y(x) is the wave function of the quantum particle for:

y(x) =0, (7

—§5/2<x<8/2.

Solving by the method of characteristic equation we obtain:

y(x) = Aexp (—W x} + Bexp (——W x] C)

h h

where A, B are integration constants.

Given the symmetry of the problem, which is that the left and right
parts of the pit are equal with respect to the location of the quantum
particle, we can obtain a relationship between the integration con-
stants:

y(-8/2)=y(5/2), A=B.

With this result in mind, the wave function will look like:

() = A[exp [_WE) J . p(_ﬁmww H ©

h h

Similarly, for the case when the energy of the particle E is greater
than the height of the potential barrier Uy, we obtain the result:

y(x)=A {exp [%.IZm(UO — E)xj + exp (—%JZm(E — Uo)xﬂ (10)

We obtained wave functions that determine the state of quantum
particle in three parts of the pit. The functions contain three integra-
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tion constants and the parameter E (quantum particle energy). The
number of independent integration constants can be reduced due to the
obvious symmetry of the problem. Since the left and right parts of the
potential well are equal with respect to the random placement of the
particle, the condition must be met:

-8/2 9 a/2 9
_aj/z‘\',l(x)\ dx = Jz‘wz(x)\ dx. (11)

As aresult of rather cumbersome integration we receive:

B - S)H,

h .
(a-90)- \/2mE1 s1n[ P

a/2 2 ~ 5 7i ) 2’11121
| ‘%(x)‘ dx = |4, [(a - onE, sm[\’ (- S)H.

8/2

-5/2

[ v dz=|af

-a/2

Due to the symmetry of the problem and the fundamental law of con-
servation of energy E;=E;=E. Accordingly, we obtain A;=A;=A,.
Thus, the number of independent integration constants is reduced to
two.

To determine the integration constants Ao, A and the energy values
E, we use the conditions of crosslinking of wave functions at the poten-
tial barrier:

v, (8/2) = (-3 /2),

LA —i
dx | dx|_ s ’
o (12)
y,(8/2)=vy(5/2),
ay, _adv
d dx|,,,
X 52 Xls/2
Additionally, if necessary, you can use the rationing condition:
-5/2 , 5/2 , a/2 ,
j v, () dx + j ()| dox + j v, () dx =1. (13)

—a/2 -5/2 5/2

The crosslinking conditions give the following system of equations:
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Aylexp(-Y) — exp(-E)] = A[exp(—Q2) + exp(Q)],
AiE?[exp(-Y) + exp(-E)] = AU, — E)"*[exp(—Q) — exp(QY)],
Ay[exp(Y) - exp(E)] = A[exp(Q) + exp(-Q)],

AjE"*[exp(Y) + exp(B)] = AU, — E)"*[exp(Q) — exp(—Q)],

(14)

where:
Y = (i8 / 2h)(2mE)"?,
Z=(G/h)2mE)"*(a-3/2),
_ (2m@U, - E))'*§
2%

The right-hand sides of all equations of system (14) are real num-
bers. Accordingly, in the left parts of the equations of the system the
sum of imaginary components should be equal to zero. Using Euler’s
formula, we obtain a condition that agrees with all equations of system
(14):

\/ma WS Ma . WS

in cos —| 1+ cos P o%

- o sin =0. (15)

@

Since the cosine and sine of the same argument cannot be zero to-
gether, condition (15) holds if:

{sin((ZmE)l/ *a /h) =0, (16)

1+ cos((2mE)“?a / 1) = 0.

The solution of the system of equations allows to calculate the ener-
gy levels of the quantum system:

232
E =T on 12, n-123,.. an
' 2ma
As we can see, the expression for energy levels is similar to the ex-
pression of energy levels of an ordinary rectangular, infinitely deep
potential pit:

_ e’

2

E

k

B, E=1,23,....

" 2ma

But there is an important difference: the calculation of expression
(17) is performed only for odd values of £=(2n —1). That is, the dis-
tance between energy levels increases significantly.

Taking into account expression (17), the wave functions (4), (5), (9)
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take the following form:

vy (x) = 24, cos {Mx} n=123,.., (18a)
a

@2n -1DII .
a

P (x) = 24, cos[ }, n=123,.., (18b)

2
v (x) = A[exp \/2”ng - H—2(2n - 1)%} +
a

(18c)
2 2
+exp[—\/2mU° I en —l)sz, n=1,23,....
a

hZ

Further definition of integration constants contains the usual
mathematical transformations, although quite cumbersome. As a re-
sult, we obtain the following expressions:

_ g
% = oe(q_5_ @5t . (rj 285 + exp(£D) — exp(-£5) (19)
2) 2+ exp(&d) + exp(—E£9)

where:

e 2n —DII
a
2cos(t/2)
exp(Ed / 2) + exp(-£5 / 2)

To reduce the record in expressions (19), (20) introduced the symbol:

2mU, I1°
*J e

0,

(20)

A=A,

Thus, the problem is solved analytically by using additional internal
connections due to the symmetry of the quantum system.

4. SEARCH FOR REAL RELEVANCE AND PROSPECTS
FOR RESEARCH DEVELOPMENT

At first glance, the chosen model of infinitely deep potential pit with
potential barrier of finite height in the middle seems rather artificial.
But, in fact, it is easy to imagine a real heterostructure that corre-
sponds to this model.
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Z- =

Fig. 2. Heterostructure corresponding to the theoretical model: 1 —wide-band
semiconductor layer, 2—narrow-band semiconductor layers, 3—conductive
layers (metals).

Such heterostructure should look like the thin layer of wideband
semiconductor placed between two slightly thicker layers of narrow-
band semiconductor. To ensure the ‘infinite depth’ of the potential pit
on the outer side surfaces of the triple semiconductor heterostructure,
it is necessary to apply layers of conductor (metal) and apply negative
electric potential (Fig. 2).

Another option for the practical implementation of the model can be
done by placing two electrons in one potential pit. In this case, the pit
is a local space—a nanopore on the surface, or in the volume of a metal
sample, at the boundary of which negative electric potential is applied.
The internal potential barrier arises due to the Coulomb interaction of
electrons.

Thus, further perspectives and directions of research will be con-
nected with practical approbation and improvement of the model.

5. CONCLUSION

1. The quantum-mechanical problem on particle in potential pit of in-
finite depth with a potential barrier of finite height in the centre of the
pit was formulated and solved.

2. The defining difference of the energy levels of quantum particlein a
potential pit of infinite depth with a potential barrier of finite height
in the centre of the well is revealed. The energy gaps between succes-
sive levels increase significantly compared to a normal rectangular,
infinitely deep potential well. The value of the energy levels is a multi-
ple of the squares of odd natural numbers.

3. Variants of the semiconductor heterostructure and Coulomb poten-
tial well on the surface or in the volume of the metal sample are pro-
posed, which in practice may correspond to the theoretical model con-
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sidered in the study.
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