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Three-parameter Lennard-Jones and Morse interatomic potentials are the 

simplest ones, which can be used to describe thermophysical properties of the 

liquid and solid substances. Upon adjusting the model parameters to real sub-
stance properties, the interatomic potentials can be used to describe simple 

single-component substance with good accuracy. Usually, these tree parame-
ters can be found from the cohesion energy, bulk moduli, and the molar vol-
ume data or the lattice parameters obtained experimentally for chemically-
pure crystalline solids. In our paper, in case of chemically-different atoms, 

for both the Lennard-Jones potential and the Morse one, or any other three-
parameter potential, we propose some convenient model relationships ex-
pressing the corresponding three parameters through the previously found 

ones for pure chemical elements. 

Key words: solid substance, interatomic interactions, Lennard-Jones poten-
tial, Morse potential, lattice parameter, bonding energy, cohesive energy, 

bulk modulus, elastic stiffness, nearest-neighbour approximation. 

Трипараметричні міжатомові потенціяли Леннард-Джонса та Морзе є од-
ними з найпростіших, що можуть використовуватися для одержання те-
плофізичних властивостей рідких і твердих речовин. За узгодження мо-
дельних параметрів з властивостями реальних речовин, міжатомові поте-
нціяли можуть використовуватися для опису простих однокомпонентних 

речовин з достатньою точністю. Зазвичай, ці параметри можуть бути 
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знайдені з даних щодо енергії зв’язку, модуля стиску, мольного об’єму 

або параметрів кристалічної ґратниці, визначених експериментально для 

хемічно чистих кристалічних тіл. В нашій роботі для випадку хемічно 

різних атомів і потенціялів Леннард-Джонса, Морзе або будь-яких інших 

трипараметричних потенціялів пропонуються деякі зручні модельні 
співвідношення, що виражають відповідні три параметри через поперед-
ньо знайдені для хемічно однокомпонентних матеріялів. 

Ключові слова: тверда речовина, міжатомові взаємодії, потенціял Лен-
нард-Джонса, потенціял Морзе, параметер ґратниці, енергія зв’язку, ене-
ргія когезії, об’ємний модуль, пружня цупкість, наближення найближ-
чих сусідів. 

(Received September 27, 2022) 
  

1. INTRODUCTION 

Finding the semi-empirical interatomic-interaction potentials is an 

important task for many aims. First, it may be initial starting point for 

the modelling of different thermodynamic properties of liquids and 

solids consisting of pure chemical element and of multiple chemical 
components. 
 The Lennard-Jones [1–3] and Morse [6] potentials are the simplest 

ones, which can be used to obtain thermophysical properties of the liq-
uid and solid substances. These potentials are mathematically simple 

and, therefore, are often used in different computer simulation stud-
ies. Due to their mathematical simplicity and generic modelling capa-
bilities, the mentioned potentials are probably still the most frequently 

studied model potentials. The Lennard-Jones potential is usually the 

standard choice for the development of theories for matter (especially 

soft-matter) as well as for the development and testing of computa-
tional methods and algorithms. Upon adjusting the model parameters 

to real substance properties, the interatomic potentials can be used to 

describe simple substance with good accuracy. Usually, these parame-
ters can be found from the cohesive energy, bulk moduli and the molar 

volume data or the lattice parameters obtained experimentally for 

chemically pure single-component crystalline solids [4, 5, 7]. These 

ideas have been also applied to study some other properties of crystal-
line solids [8, 9, 11]. Nevertheless, finding similar parameters for in-
teratomic potentials in case of chemically-different interacting atoms 

is not so easy, and the problem is still actual. 
 In our paper, in case of chemically-different atoms, for both the 

Lennard-Jones potential and the Morse one, or any other three-
parameter potential, we propose some convenient model relationships 

expressing the corresponding three parameters through the previously 

found ones for pure chemical elements. 
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2. PARAMETERIZATIONS OF THE LENNARD-JONES 
AND MORSE POTENTIALS 

Here, we introduce two three-parameter potentials, namely, the Len-
nard-Jones type (LJ-type) and the Morse type (M-type) potential, for 

the interaction energy between two neighbouring same atoms in the 

following form: 

 2 2 ( / 1) ( / 1)
LJ M( ) (( / ) 2( / ) ) and ( ) ( 2 )n n r a r au r r a r a u r e e− − − β − −β −= ε − = ε − . (1) 

They have three parameters, LJ-type {ε, a, n} and M-type {ε, a, β}, re-
spectively. Here, r means the interatomic distance. Both interaction 

energy models uP(r) (with {ε, a, n} for P = LJ or {ε, a, β} for P = M) have 

minima at r = a, where uP(a) = −ε characterizes the bonding energy of 

two same atoms at the equilibrium distance between them. The expo-
nent parameters, n, β and 2n, 2β, characterize the decrease or increase 

rate of the attractive energy parts and the repulsive ones, as the inter-
atomic-separation distance r changes. 
 Instead of these three parameters, we can introduce a new set of 

universal parameters like the equilibrium interatomic bond length a, 
elastic stiffness of interatomic bonds k, and the elastic cut-off distance 

c, where 

 ( ),  2 /Pk u a c k′′= = ε . (2) 

 In particular, for the Lennard-Jones potential, 

 2 2
LJ 2 / ,  /k n a c a n= ε = , (3) 

and, for the Morse potential, 

 2 2
M 2 / ,  /k a c a= εβ = β . (4) 

 Both interatomic potentials of LJ- and M-types, as well as so-called 

elastic-bond potential model, calculated at the β = n = 5 values are 

shown in Fig. 1. In these both cases and in any other three-parameter 

interatomic-potential models, we will use the following ‘model-
independent’ (universal) relationships: 

 2 22 / ,  0.5k c kc= ε ε = . (5) 

Here, we have introduced so-called elastic-bond potential, 

 = ε − + γ − 2
EB ( ) ( 1 ( ( 1)) )u r r a , (6) 

and, in addition, the equations similar to Eqs. (3), (4) obtained for the 
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Lennard-Jones and Morse potentials, 

 2 2
EB 2 / ,  /k a c a= εγ = γ . (7) 

It also shown in Fig. 1 and calculated at γ = β = n = 5. 
 As it follows from Fig. 1, the elastic cut-off parameter c introduced 

in Eq. (2) characterizes interatomic distance, where elastic-bond po-
tential takes a zero value, uEB(a + c) = 0, that means that the elastic 

bond is broken at this distance. So, this parameter can be used for any 

interatomic-potential model as well. 
 In present subsection, for any three-parameter potential uP(r), in-
stead of corresponding three parameters, we can introduce a new set of 

universal parameters like the equilibrium interatomic-bond length a, 
where ′ =( ) 0,Pu a  the interatomic-coupling energy uP(a) = −ε, the elastic 

stiffness of interatomic bond ′′= ( )Pk u a , and the elastic cut-off dis-
tance = ε2 / .c k  Finally, we have introduced convenient dimension-
less potential parameter η = a/c. Using these ones, the interatomic po-
tential itself can be represented as follows: 

 ( )P

r
u r

aη
 = εϕ  
 

. (8) 

Here, the dimensionless potential function ηϕ ( )x  depends only on the 

dimensionless interatomic-separation distance x and a single potential 

 
  Interatomic separation x = r/a 

Fig. 1. Three-parameter Lennard-Jones, Morse and parabolic elastic-bond in-
teratomic potentials calculated at equal bonding energy ε = 1 and β = n = 5. 
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parameter η. In case of the Lennard-Jones and Morse potentials, 
η = β = n. 

3. FINDING PARAMETERS FROM THE EXPERIMENTAL DATA 

To find these parameters, most of researchers use the cohesive energy, 
bulk moduli and the molar volume (or lattice parameter) data such as 

represented in Table 1 for some f.c.c. and b.c.c. transition metals taken 

from [10, 12–14]. 
 Using Eq. (1), one can write the molar internal energy at zero tem-
perature for the crystalline solid as function of the nearest-neighbour 

distance r as follows: 

 η η
= =

   = = ε φ = εΦ   
   

∑ ∑A A A
1 1

1 1 1
( ) ( )

2 2 2

c cK K

i P i i i
i i

r r
U r N zu rp N z p N

a a
. (9) 

Here, summation is performed over a set of Kc nearest co-ordination 

spheres (i = 1, 2, …, Kc), where zi denotes the number of atoms on the i-
th co-ordination sphere. NA = 6.02214076⋅1023

 mole−1
 is the well-known 

Avogadro number, and pi is a set of dimensionless distances to the i-th 

co-ordination sphere. We also introduce the dimensionless Lennard-
Jones or Morse potential functions ηϕ ( )x  having a minimum at x = 1, 
where (1) 1ηϕ = − , and the second derivative value 

2(1) 2η′′ϕ = η  at 

η = β = n for M- and LD-type potentials, respectively. Further, we will 
denote η η ηΨ = Φ = Φ( ) 0.5 ( / ) 0.5 ( )x r a x  as the dimensionless crystal 
energy per atom. Normally, the internal energy of a crystal must be 

represented as a function of the molar volume Vm = NAv(r), where v(r) is 

the volume per single atom in a given crystalline solid. For many ideal 
crystal structures like f.c.c., h.c.p. and b.c.c., there is a simple rela-

TABLE 1. Cohesive energy, bulk modulus and molar volume interpolated to 

0 K for some f.c.c. and b.c.c. metals (experimental data). 

 V Nb Ta Cr Mo W Fe  
Units 

Em, kJ/mol 
K, GPa 

Vm, 10−6⋅m3) 
KVm/Em 

b.c.c. 
512 
160 

8.337 
2.59 

b.c.c. 
730 
170 

10.84 
2.52 

b.c.c. 
782 
200 

10.87 
2.78 

b.c.c. 
395 
160 

7.232 
2.93 

b.c.c. 
658 
230 

9.334 
3.26 

b.c.c. 
859 
310 

9.550 
3.45 

b.c.c. 
413 
170 

7.092 
2.92 

 

         

 Ni Pd Pt Cu Ag Au Rh Ir 
Units 

Em, kJ/mol 
K, GPa 

Vm, 10−6⋅m3) 
KVm/Em 

f.c.c. 
428 
180 

6.589 
2.77 

f.c.c. 
376 
180 

8.851 
4.23 

f.c.c. 
564 
230 

9.095 
3.71 

f.c.c. 
336 
140 

7.092 
2.95 

f.c.c. 
284 
100 

10.28 
3.61 

f.c.c. 
368 
220 

10.21 
6.32 

f.c.c. 
554 
380 

8.266 
5.47 

f.c.c. 
670 
320 

8.520 
3.42 
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tionship between the atomic volume and the nearest-neighbour dis-
tance: v(r) = qr3, where q is a constant dependent on particular crystal 
geometry. At the equilibrium distance r = re, where 

 A( ( )) ( ) 0
e

e
r r

d
U V r N x

dr η
=

  ′= εΨ = 
 

, (10) 

we can obtain a dimensionless ratio xe = re/a and the equilibrium molar 

volume 

 3
e A e( )mV r N qr= . (11) 

 Therefore, using Eqs. (8), (9), one can obtain the bulk modulus K at 

zero temperature as follows: 

 
m

2

m e2 2
e

( ) 1
( )

9
V V

d U V
K V x

dV qr a η
=

 
′′= = ε Ψ 

 
. (12) 

On the other hand, at zero temperature, the molar cohesive energy is 

 m m A e( ) ( )E U V N xη= − = − εΨ . (13) 

 From Eqs. (12), (13), it follows an important dimensionless relation-
ship between the cohesive energy, bulk modulus and the molar volume: 

 η η′′= − Ψ Ψ2m
e e e

m

1
( ) / ( )

9

V K
x x x

E
. (14) 

Here, xe = xe(η) is a value minimizing the dimensionless cohesive-
energy function that can be obtained solving Eq. (10). Obviously, it de-
pends on the dimensionless parameter η = {n, β, γ} of any interatomic 

potential discussed in the present paper or some other ones too. There-
fore, Eq. (14) gives a possibility finding this one parameter as function 

of the experimental dimensionless quantity (VmK/Em): 

 η = η m m( / )V K E . (15) 

 The second parameter, namely, the bonding energy, one can find 

from Eq. (13): 

 
η

ε = −
Ψ η

m A

e

/

( ( ))

E N

x
. (16) 

 Lastly, the third parameter, i.e., the bonding length a, is as follows: 

 = ηe/ ( )a d x . (17) 
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Here, d is the experimentally measured nearest-neighbour distance in 

b.c.c., f.c.c. or h.c.p. structure, or calculated from the known atomic 

volume: 

 = =3
m A( ) /v d qd V N , (18) 

where 

 = = = =b.c.c. f.c.c.4 / 3 3 0.7698, 1 / 2 0.7071q q   

and, obviously, 

 = =1/3 1/3
b.c.c. b.c.c. f.c.c. f.c.c.3(2 ) / 2, (4 ) / 2d v d v . (19) 

 The data given in Table 1 can be used to calculate all the interatomic-
potential parameters. Normally, it can be done applying appropriate 

numerical methods. But here, we restrict ourselves by the simplest 

nearest-neighbour approximation by means of setting in Eq. (9) Kc = 1, 
η ηΨ = φ1( ) ( / 2) ( )x z x  and finding from Eq. (10) ′φ = ⇒ =e e( ) 0 1.x x  Af-

ter that, one can see: η η′′Ψ = − Ψ = η η = β γ2
1 1(1) / 2,  (1) ( / 2)2 ( { , , })z z n . 

Finally, using Eq. (14), we obtain: 

 = η η =2m
m m

m

2
or 3 / (2 )

9

V K
V K E

E
. (20) 

 At the same time, from Eqs. (16), (17), we find the two remained po-
tential parameters: 

 ε = =m A
1

2
( / ) andE N a d

z
. (21) 

 All the parameters characterizing the model Lennard-Jones and 

Morse potentials consistent with experimental data are collected in 

Tables 2, 3. It should be mentioned that the potential parameters for 

the b.c.c. lattice were calculated using both the first and second co-
ordination spheres setting in Eq. (9) Kc = 2. The reason of that is the 

known elastic instability of b.c.c. lattices in the nearest-neighbour ap-
proximation in respect to its shear distortion. 
 Therefore, in present subsection, we have discussed a procedure of 

finding the potential parameters using the cohesive energy, bulk mod-
ulus and the molar volume (or lattice parameter) data represented in 

Table 1 for some f.c.c. and b.c.c. transition metals. The idea using 

these experimental data has been proposed quite long ago and, then, 

was applied by many other researchers mainly limiting themselves by 

the LJ- and M-cases [4, 5, 7]. The main reason for us is to formulate the 

finding procedure to be maximally independent on a particular poten-
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tial type. Therefore, we did everything in dimensionless form. We 

have defined the basic crystal energy function as a sum of the individ-
ual dimensionless interatomic potentials taken over some appropriate 

number Kc of co-ordination spheres according to Eq.(9): 

 η η
=

Ψ = φ∑
1

1
( ) ( )

2

cK

i i
i

x z xp . (22) 

Then, making minimizing procedure, one can find the equilibrium di-
mensionless nearest-neighbour distance x = xe(η) dependent on the po-
tential parameter η in a given crystal lattice with a given set of co-
ordination numbers {zi} and a set of dimensionless distances {pi} to the 

TABLE 2. Cohesive energy per atom (eV), volume per atom (Å3) and the near-
est-neighbour distance (Å) together with the potential parameters calculated 

from the experimental data in the nearest-neighbour approximation for some 

b.c.c. metals. 

Metal εa, eV va, Å3 d, Å β ε, eV k, eV/Å3 c, Å 

V 5.31 13.84401 2.619959 3.413942 0.884493 3.003638 0.767429 

Nb 7.57 18.00037 2.859572 3.367492 1.261094 3.497746 0.84917 

Ta 8.11 18.05018 2.862208 3.536948 1.350925 4.125877 0.809231 

Cr 4.09 12.00578 2.49845 3.631116 0.682373 2.882639 0.688067 

Mo 6.82 15.49293 2.720102 3.830144 1.136712 4.507546 0.710183 

W 8.90 15.85826 2.741316 3.940178 1.483945 6.131421 0.695734 

Fe 4.28 11.7733 2.482219 3.624914 0.713468 3.043125 0.684766 

TABLE 3. Cohesive energy per atom (eV), volume per atom (Å3), and the near-
est-neighbour distance (Å) together with the potential parameters calculated 

from the experimental data in the nearest-neighbour approximation for some 

f.c.c. metals. 

Metal εa, eV va, Å3 d, Å β ε, eV k, eV/Å3 c, Å 

Ni 4.44 10.94303 2.492016 3.530581 0.739381 2.968171 0.705837 

Pd 3.90 14.69587 2.749393 4.362912 0.64955 3.27131 0.630174 

Pt 5.85 15.11101 2.775041 4.085952 0.974325 4.224556 0.679167 

Cu 3.48 11.7733 2.553511 3.643487 0.580449 2.363485 0.700843 

Ag 2.94 17.07046 2.890148 4.030509 0.490617 1.908326 0.717068 

Au 3.81 16.95422 2.883573 5.332917 0.63573 4.348807 0.540712 

Rh 5.74 13.73275 2.687969 4.961351 0.957049 6.521024 0.541782 

Ir 6.94 14.14789 2.714786 3.923009 1.157442 4.833891 0.692016 
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i-th co-ordination sphere. Finally, using Eq. (14), we obtain parameter 

η as a function of the only dimensionless experimental parameter 

χ = VmK/Em, η = η(χ), as well as two remaining potential parameters: 

 ε χ = − Ψ η χ χ = η χm e e( ) / ( ( ( ))) and ( ) / ( ( ))e x a d x . (23) 

Here, em = Em/NA is the cohesive energy per atom, and d is the experi-
mentally measured distance between the nearest atoms in b.c.c., f.c.c. 
or h.c.p. crystals. 

4. MODELLING INTERATOMIC POTENTIALS FOR CHEMICALLY-
DIFFERENT TYPES’ ATOMS 

In present section, we will propose some simple ideas, which allow con-
structing the interatomic potential for two chemically-different atoms 

A and B, shown schematically in Fig. 2. These atoms are placed at some 

interatomic distance rAB = (rA + rB)/2, where rA and rB denote the bond 

length for A–A- or B–B-type interacting atoms, respectively. Here, f is 

a force taking zero value, if atoms A and B are at their equilibrium dis-
tances: rA = aA and rB = aB. However, the interaction forces acting be-
tween the atoms (all equal due to Newton’s third law) will change sup-
posedly linearly, if rA and rB will experience some small changes: 
rA = aA + δaA and rB = aB + δaB, as follows from equations below: 

 = δ = δA A B Bandf k a f k a . (24) 

 

Fig. 2. The scheme represents two ball-shaped chemically-different atoms A 

and B producing weak forces, when the distance between them slightly chang-
es. 
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Here, kA, kB are the elastic-bond stiffness parameters introduced in 

previous section. A similar relationship can be supposedly written for 

the A–B bonds: 

 AB AB AB A B, where ( ) / 2f k a a a a= δ δ = δ + δ . (25) 

Combining these equations, one can obtain relationships for the elas-
tic-bond stiffness parameters for the A–B-type interatomic bonds as 

function of the stiffness parameters for the A–A and B–B ones, respec-
tively: 

 = +AB A B1 / (1 / 1 / ) / 2k k k . (26) 

Along with this important equation, one can use a similar additive rule 

for the equilibrium bond length a. Besides, the elastic cut-off distance 

cAB introduced in the previous section will be represented generally 

consisting of the half-additive contribution (cA + cB)/2 and a difference 

= − +exc
AB AB A B( ) / 2c c c c  as indicated in Eq. (27): 

 exc
AB A B AB A B AB( ) / 2, ( ) / 2a a a c c c c= + = + + . (27) 

Later, we will show that this so-called c-excess parameter 
exc
ABc  is small, 

but nevertheless, plays a very important role. These three relation-
ships give us full description of all three parameters for the Lennard-
Jones and Morse potentials, or any other three-parameter potentials as 

well. In particular, the bonding energy between the A–B atoms can be 

easily found from the following equation: 

 2 2 2
AB AB A A B B/ ( / / ) / 2c c cε = ε + ε . (28) 

 One can also obtain the following relationships for the exponent pa-
rameters n, β of the Lennard-Jones and Morse potentials: 
nAB = βAB = aAB/cAB. 
 Equation (28) is important for many applications for ordered or dis-
ordered binary alloys to predict their thermodynamic properties at dif-
ferent atomic concentrations. 
 In order to analyse and discuss this equation, it is more convenient 

to express it in a dimensionless form: 

 
2 2 2 2
A AB B AB

AB A B

/ /1
/ 2, where

( / ) ( / ) ( / ) 2

  ε + ε
= + ε = ε ε ε ε ε ε 

A Bc c c c
. (29) 

 One can also express parameters εA, εB as follow: 

 A A B A B B A B A B( ) / 2 ( ) / 2, ( ) / 2 ( ) / 2ε = ε + ε + ε − ε ε = ε + ε − ε − ε . (30) 
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 The same can be done for parameters cA, cB as well: 

 A A B A B B A B A B( ) / 2 ( ) / 2, ( ) / 2 ( ) / 2c c c c c c c c c c= + + − = + − −  (31) 

or the corresponding dimensionless relationships: 

 A A B B A B/ 1 ( ) / 2 , / 1 ( ) / 2ε ε = + ε − ε ε ε ε = − ε − ε ε  (32) 

and 

 A AB A B B AB A B/ 1 ( ) / 2 , / 1 ( ) / 2= + − = − −c c c c c c c c c c . (33) 

 Therefore, Eq. (28) is expressed through the following two dimen-
sionless parameters with c = (cA + cB)/2 and ε = (εA + εB)/2: 

 AB A B AB AB A B AB( ) / 2 ( 1), ( ) / 2 ( 1)= − ≤ ω = ε − ε ε ω ≤w c c c w . (34) 

 So, finally, from Eq. (28)–(33), we obtain: 

 
2 2 2

AB AB

AB AB AB AB

(1 ) (1 )1 1

( / ) 2 1 1

w wc

c

   + −
= +  ε ε + ω − ω   

, (35) 

and then find: 

 
12 22 2

AB AB AB AB AB
AB AB AB

AB AB

(1 ) (1 )
2 ( , )

1 1

−
 ε + −   = + = ω    ε + ω − ω    

c w w c
F w

c c
. (36) 

 One can observe (see Fig. 3) that FAB(ωAB, wAB) takes exactly unit 

value, FAB(ωAB, wAB) = 1, everywhere at the straight line ωAB = wAB with-
in the square box region −1 ≤ ωAB ≤ 1 and −1 ≤ wAB ≤ 1; however, 
FAB(ωAB, wAB) < 1 in other cases. 
 Therefore, in this section, we have proposed some simple ideas, 

which allowed constructing the interatomic-potential parameters for 

two chemically-different atoms A and B. 
 For this aim, we have considered the interatomic-distance changes 

δAA(f), δBB(f), δAB(f) produced by the same weak force f applied to A–A, 
B–B and A–B atomic pairs. We also assumed that, similarly to the 

equilibrium interatomic-bond length rule: aAB = (aAB + aAB)/2, the addi-
tional distance changes will follow the same rule: δAB = (δAB + δAB)/2. So, 
the important relationship between the interatomic-stiffness parame-
ters, 1/kAB = (1/kA + 1/kB), has been obtained in Eq. (25). It also gives a 

corresponding relationship for the energy coupling parameters: 
2 2 2
AB AB A A B B/ ( / / ) / 2ε = ε + εc c c . 

 Finally, introducing two new parameters wAB = (cA − cB)(cA + cB) and 

ωAB = (εA − εB)(εA + εB), one can obtain a fully dimensionless relationship: 



12 O. A. LIKHACHEV, Yu. M. KOVAL, T. G. SYCH, and V. A. TATARENKO 

 2
AB AB AB AB AB/ ( / ) ( , )ε ε = ωc c F w , (37) 

where c = (cA + cB)/2, ε = (εA + εB)/2, and FAB(ωAB, wAB) is the function de-
fined in Eq. (36). In present subsection in Eq. (27), we have also as-
sumed that 

exc
AB ABc c c= +  and obtained Eq. (36). Therefore, there is a 

serious reason to introduce a new positively definite function 
2 exc 2 exc

AB AB AB AB AB AB( , ) ( / ) (1 / ) 1 2 /ω = = + ≈ +g w c c c c c c , which depends 

on the same parameters, like FAB(ωAB, wAB) does. As FAB(ωAB, wAB) and 

gAB(ωAB, wAB) must approach to the unit value as ωAB → 0 and wAB → 0, 
both these functions can be expanded as FAB(ωAB, wAB) ≈ 1 − (ωAB − wAB)2

 

and gAB(ωAB, wAB) ≈ 1 + (P1(ωAB)2
 + P2ωABwAB + P3(wAB)2) in this limit, ac-

cordingly. The fact that these expansions do not contain the linear 

terms with respect to parameters ωAB, wAB is due to the inversion-
symmetry requirement: gAB(ωAB, wAB) = gAB(−ωAB, −wAB). Therefore, in 

this case we will have: 

 2 2
AB 1 AB 2 AB AB 3 AB/ 1 (( 1) )ε ε ≈ + − ω + ω +P P w Pw . (38) 

Here, P1, P2 and P3 are some fitting constants, which should be found 

from the analysis of some (minimum three) binary phase diagrams. 
 We are not going to discuss the appropriate procedure for that in de-
tails in the present paper and will do that somewhere else. We should on-
ly to mention that, for instance, it is convenient to consider the disor-
dered binary alloys like f.c.c. lattice-based Cu–Ni, Ni–Au and Cu–Rh. 
All of them have a good solubility at high temperatures, but undergo 

decomposition reactions below some corresponding characteristic tem-
peratures Tmax and concentrations xmax. In case of Cu–Ni alloy, these 

 
 

a b 

Fig. 3. Representing 3D image of the FAB(ωAB, wAB)-surface calculated from 

Eq. (36) (a); representing 2D image of the FAB(ωAB, wAB)-surface calculated 

from Eq. (36) (b). Here, XAB = wAB = (cA − cB)(cA + cB), YAB = ωAB = (εA − εB)(εA + εB) 
and ZAB = FAB(ωAB, wAB). 
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points are Tmax = 355°C, xmax = 0.673; for Ni–Au alloy, they are 

Tmax = 812°C, xmax = 0.29; and for Cu–Rh alloy, they are Tmax = 812°C, 

xmax = 0.29 [15]. Within the mean self-consistent field approximation, 
there is a simple relationship between these points and the interchange 

energy εinterch
 [16]: kTmax/(2z1|εinterch|) = xmax(1 − xmax) describing the spi-

nodal curve, if the nearest-neighbour interaction approximation is 

adopted, where Tmax is the absolute temperature in [K], and z1 = 12 is the 

first co-ordination number in this case of f.c.c. lattice. 
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