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Three-parameter Lennard-Jones and Morse interatomic potentials are the
simplest ones, which can be used to describe thermophysical properties of the
liquid and solid substances. Upon adjusting the model parameters to real sub-
stance properties, the interatomic potentials can be used to describe simple
single-component substance with good accuracy. Usually, these tree parame-
ters can be found from the cohesion energy, bulk moduli, and the molar vol-
ume data or the lattice parameters obtained experimentally for chemically-
pure crystalline solids. In our paper, in case of chemically-different atoms,
for both the Lennard-Jones potential and the Morse one, or any other three-
parameter potential, we propose some convenient model relationships ex-
pressing the corresponding three parameters through the previously found
ones for pure chemical elements.
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3HAWJEHI 3 JaHWX II[OJ0 eHeprii 3B’sA3Ky, MOAYJSI CTHUCKY, MOJBLHOTO 006’eMy
a0o mapaMeTpiB KpHCTAJTiUHOI I'PATHUIII, BUBHAUEHUX €KCIIEPUMEHTANbHO IJIA
XeMiYHO YMCTHX KpHCTaJiuHuUX Tijg. B Hamriii po6Gori ajaa BUIAAKY XeMidHO
pisumx aTromis i morentiaxiB Jlenrnapa-:xonca, Mopse a6o Oyab-AKUX iHITTUX
TPpUIIapaAMETPUYHUX IIOTEHI[iAJIB IIPONMOHYIOThCA MAeAKi 3pyduHi MomenbHi
CIIiBBiIHOIIIEHHA, II[0 BUPaKAIOTh BiAIIOBiAHI TpM mapaMeTpu uepes3 IoIepe/-
HbO 3HAWAEHI AJIg XeMiuHO OJHOKOMIIOHEHTHUX MaTepiAIiB.

KarouoBi cioBa: TBepaa peyoBMHA, MiKaTOMOBi Baaemoxii, moreHiisn JleH-
Hapn-:komca, moreHiisa Mopae, mapamerep I'paTHHUIIL, eHeprid 3B’ A3KY, eHe-
pria xoresii, 06’eMHUI MOAYJb, IPY/KHA MYIKICTh, HAOAMKEeHHSI HANOIMMK-
YUX CyCiZiB.

(Received September 27, 2022)

1.INTRODUCTION

Finding the semi-empirical interatomic-interaction potentials is an
important task for many aims. First, it may be initial starting point for
the modelling of different thermodynamic properties of liquids and
solids consisting of pure chemical element and of multiple chemical
components.

The Lennard-Jones [1-3] and Morse [6] potentials are the simplest
ones, which can be used to obtain thermophysical properties of the liq-
uid and solid substances. These potentials are mathematically simple
and, therefore, are often used in different computer simulation stud-
ies. Due to their mathematical simplicity and generic modelling capa-
bilities, the mentioned potentials are probably still the most frequently
studied model potentials. The Lennard-Jones potential is usually the
standard choice for the development of theories for matter (especially
soft-matter) as well as for the development and testing of computa-
tional methods and algorithms. Upon adjusting the model parameters
to real substance properties, the interatomic potentials can be used to
describe simple substance with good accuracy. Usually, these parame-
ters can be found from the cohesive energy, bulk moduli and the molar
volume data or the lattice parameters obtained experimentally for
chemically pure single-component crystalline solids [4, 5, 7]. These
ideas have been also applied to study some other properties of crystal-
line solids [8, 9, 11]. Nevertheless, finding similar parameters for in-
teratomic potentials in case of chemically-different interacting atoms
is not so easy, and the problem is still actual.

In our paper, in case of chemically-different atoms, for both the
Lennard-Jones potential and the Morse one, or any other three-
parameter potential, we propose some convenient model relationships
expressing the corresponding three parameters through the previously
found ones for pure chemical elements.
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2. PARAMETERIZATIONS OF THE LENNARD-JONES
AND MORSE POTENTIALS

Here, we introduce two three-parameter potentials, namely, the Len-
nard-Jones type (LJ-type) and the Morse type (M-type) potential, for
the interaction energy between two neighbouring same atoms in the
following form:

u (r)==e((r/a)? —2(r /a)™") and u,(r) = g(e """V - 2eP/* Dy (1)

They have three parameters, LJ-type {¢, a, n} and M-type {¢, a, B}, re-
spectively. Here, r means the interatomic distance. Both interaction
energy models up(r) (with {g, a, n} for P=LdJ or {g, a, B} for P=M) have
minima at r=a, where up(a) =—¢ characterizes the bonding energy of
two same atoms at the equilibrium distance between them. The expo-
nent parameters, n, B and 2n, 2, characterize the decrease or increase
rate of the attractive energy parts and the repulsive ones, as the inter-
atomic-separation distance r changes.

Instead of these three parameters, we can introduce a new set of
universal parameters like the equilibrium interatomic bond length a,
elastic stiffness of interatomic bonds k&, and the elastic cut-off distance

¢, where
kE=uy(a), c=+2¢/k. (2)

In particular, for the Lennard-Jones potential,
k,=2en’/a’, c=a/n, 3)
and, for the Morse potential,
ky =2:p* /a®, c=a/B. (4)

Both interatomic potentials of LJ- and M-types, as well as so-called
elastic-bond potential model, calculated at the f=n=5 values are
shown in Fig. 1. In these both cases and in any other three-parameter
interatomic-potential models, we will use the following ‘model-
independent’ (universal) relationships:

E=2¢/c% &=0.5kc*. (5)
Here, we have introduced so-called elastic-bond potential,
U () = (-1 + (y(r/a - 1))*), (6)

and, in addition, the equations similar to Eqgs. (3), (4) obtained for the
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Fig. 1. Three-parameter Lennard-Jones, Morse and parabolic elastic-bond in-
teratomic potentials calculated at equal bonding energye=1and p=n=>5.

Lennard-Jones and Morse potentials,

ko = 287" /a*, c=a/y. (7

It also shown in Fig. 1 and calculated aty=pf=n=>5.

As it follows from Fig. 1, the elastic cut-off parameter ¢ introduced
in Eq. (2) characterizes interatomic distance, where elastic-bond po-
tential takes a zero value, ugp(a +c)=0, that means that the elastic
bond is broken at this distance. So, this parameter can be used for any
interatomic-potential model as well.

In present subsection, for any three-parameter potential up(r), in-
stead of corresponding three parameters, we can introduce a new set of
universal parameters like the equilibrium interatomic-bond length a,
where u,(a) = 0, the interatomic-coupling energy ur(a) =—¢, the elastic
stiffness of interatomic bond & =u;(a), and the elastic cut-off dis-
tance ¢ = ./2¢ / k. Finally, we have introduced convenient dimension-
less potential parameter n=a/c. Using these ones, the interatomic po-
tential itself can be represented as follows:

up(r) = €9, (2) . (3)

Here, the dimensionless potential function ¢, (x) depends only on the
dimensionless interatomic-separation distance x and a single potential
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parameter m. In case of the Lennard-Jones and Morse potentials,
n=p=n.

3. FINDING PARAMETERS FROM THE EXPERIMENTAL DATA

To find these parameters, most of researchers use the cohesive energy,
bulk moduli and the molar volume (or lattice parameter) data such as
represented in Table 1 for some f.c.c. and b.c.c. transition metals taken
from [10, 12—-14].

Using Eq. (1), one can write the molar internal energy at zero tem-
perature for the crystalline solid as function of the nearest-neighbour
distance r as follows:

U(r):lN izu (rp)=lN sizd) Lp :lN ed r 9)
2Ai=1iPi 2Ai=1inai 2Ana'
Here, summation is performed over a set of K. nearest co-ordination
spheres (i=1, 2, ..., K.), where z; denotes the number of atoms on the i-
th co-ordination sphere. Ny =6.02214076-102 mole! is the well-known
Avogadro number, and p; is a set of dimensionless distances to the i-th
co-ordination sphere. We also introduce the dimensionless Lennard-
Jones or Morse potential functions ¢_(x) having a minimum at x=1,
where ¢,(1)=-1, and the second derivative value o (1) = 2n° at
n=p=n for M- and LD-type potentials, respectively. Further, we will
denote ¥ (x) =0.5® (r/a)=0.5® (x) as the dimensionless crystal
energy per atom. Normally, the internal energy of a crystal must be
represented as a function of the molar volume V,, = Nav(r), where v(r) is
the volume per single atom in a given crystalline solid. For many ideal
crystal structures like f.c.c., h.c.p. and b.c.c., there is a simple rela-

TABLE 1. Cohesive energy, bulk modulus and molar volume interpolated to
0 K for some f.c.c. and b.c.c. metals (experimental data).

| V | Nb | Ta | Cr | Mo | W | Fe

Units b.c.c. b.c.c. b.c.c. Db.c.c. b.c.c. Db.c.c. b.c.c.
E,,kJ/mol 512 730 782 395 658 859 413
K, GPa 160 170 200 160 230 310 170
Vm, 108m3) 8.8337 10.84 10.87 7.232 9.334 9.550 7.092
KV, /E, 2.59 2.52 2.78 2.93 3.26 3.45 2.92

| Ni | Pd | Pt | Cu | Ag | Au | Rh | Ir

Units f.c.c. f.c.c. f.c.e. f.c.c. f.c.c. f.c.c. f.c.c. f.c.c.
E,,kJ/mol 428 376 564 336 284 368 554 670
K, GPa 180 180 230 140 100 220 380 320
Vm, 108.m3) 6.589 8.851 9.095 7.092 10.28 10.21 8.266 8.520
KVw/En 2.77 4.23 3.71 2.95 3.61 6.32 5.47 3.42
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tionship between the atomic volume and the nearest-neighbour dis-
tance: v(r)=qr?, where ¢ is a constant dependent on particular crystal
geometry. At the equilibrium distance r=r., where

(iU(V(r»j = Ny eW! (x,) =0, (10)
dr r=r,

we can obtain a dimensionless ratio x.=r./a and the equilibrium molar
volume

V. (r,)=N,qr’. (11)

Therefore, using Egs. (8), (9), one can obtain the bulk modulus K at
zero temperature as follows:

2
K=V d U(Z) =g 1 5 Pr(x,) . (12)
awvs ), 9gr.a® "

On the other hand, at zero temperature, the molar cohesive energy is
E,=-U(W,)=-N,e¥ (x,). (13)

From Egs. (12), (13), it follows an important dimensionless relation-
ship between the cohesive energy, bulk modulus and the molar volume:

V_K 1 "
2= R /Y, () (14)

m

Here, x.=x.n) is a value minimizing the dimensionless cohesive-
energy function that can be obtained solving Eq. (10). Obviously, it de-
pends on the dimensionless parameter n={n, B, y} of any interatomic
potential discussed in the present paper or some other ones too. There-
fore, Eq. (14) gives a possibility finding this one parameter as function
of the experimental dimensionless quantity (VK /Emn):

n=nV,K/E,). (15)

The second parameter, namely, the bonding energy, one can find
from Eq. (13):
g = _M_ (16)
¥ (x, (M)

Lastly, the third parameter, i.e., the bonding length a, is as follows:

a=d/x,(n). 17)
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Here, d is the experimentally measured nearest-neighbour distance in
b.c.c., f.c.c. or h.c.p. structure, or calculated from the known atomic
volume:

v(d)=qd*=V,_/N,, (18)
where
G.. =4/3/3=0.7698,¢q,. =1/-/2=0.7071
and, obviously,
d,.. =B@v, )" /2 d,,, = (v, )" /2. (19)

The data given in Table 1 can be used to calculate all the interatomic-
potential parameters. Normally, it can be done applying appropriate
numerical methods. But here, we restrict ourselves by the simplest
nearest-neighbour approximation by means of setting in Eq. (9) K.=1,
¥ (%) =(z / 2)¢,(x) and finding from Eq. (10) ¢'(x,) =0 = x, =1. Af-
ter that, one can see: ¥ (1) =-z, /2, ¥/ (1) = (3 /220 (n = {n,B,7}).
Finally, using Eq. (14), we obtain:

VE—K = §n2 orn=3JV.K/QE,). (20)

At the same time, from Eqgs. (16), (17), we find the two remained po-
tential parameters:

s=£(Em/NA)anda=d. (21)
z

1

All the parameters characterizing the model Lennard-Jones and
Morse potentials consistent with experimental data are collected in
Tables 2, 3. It should be mentioned that the potential parameters for
the b.c.c. lattice were calculated using both the first and second co-
ordination spheres setting in Eq. (9) K.=2. The reason of that is the
known elastic instability of b.c.c. lattices in the nearest-neighbour ap-
proximation in respect to its shear distortion.

Therefore, in present subsection, we have discussed a procedure of
finding the potential parameters using the cohesive energy, bulk mod-
ulus and the molar volume (or lattice parameter) data represented in
Table 1 for some f.c.c. and b.c.c. transition metals. The idea using
these experimental data has been proposed quite long ago and, then,
was applied by many other researchers mainly limiting themselves by
the LJ- and M-cases [4, 5, 7]. The main reason for us is to formulate the
finding procedure to be maximally independent on a particular poten-



8 0. A.LIKHACHEV, Yu. M. KOVAL, T. G. SYCH, and V. A. TATARENKO

TABLE 2. Cohesive energy per atom (eV), volume per atom (A?) and the near-
est-neighbour distance (A) together with the potential parameters calculated
from the experimental data in the nearest-neighbour approximation for some
b.c.c. metals.

Metal | &, eV ‘ Ua, A3 ‘ d, A ‘ B ‘ g, eV |k, eV/A3| c, A
A% 5.31 13.84401 2.619959 3.413942 0.884493 3.003638 0.767429
Nb 7.57 18.00037 2.8595723.3674921.261094 3.497746 0.84917
Ta 8.11 18.05018 2.862208 3.536948 1.350925 4.125877 0.809231
Cr 4.09 12.00578 2.49845 3.631116 0.682373 2.882639 0.688067
Mo 6.82 15.49293 2.720102 3.8301441.1367124.507546 0.710183
W 8.90 15.858262.7413163.940178 1.4839456.131421 0.695734
Fe 4.28 11.7733 2.4822193.624914 0.713468 3.043125 0.684766

tial type. Therefore, we did everything in dimensionless form. We
have defined the basic crystal energy function as a sum of the individ-
ual dimensionless interatomic potentials taken over some appropriate
number K. of co-ordination spheres according to Eq.(9):

W (1) == 20, (xp,)- 22)
D 4

Then, making minimizing procedure, one can find the equilibrium di-
mensionless nearest-neighbour distance x = x.(n) dependent on the po-
tential parameter n in a given crystal lattice with a given set of co-
ordination numbers {z;} and a set of dimensionless distances {p;} to the

TABLE 3. Cohesive energy per atom (eV), volume per atom (A?), and the near-
est-neighbour distance (A) together with the potential parameters calculated
from the experimental data in the nearest-neighbour approximation for some
f.c.c. metals.

Metal | &, eV | Va, A3 ‘ d, A ‘ B | g, eV | k,eV/A3 ‘ c, A
Ni 4.44 10.94303 2.492016 3.5630581 0.739381 2.968171 0.705837
Pd 3.90 14.69587 2.749393 4.362912 0.64955 3.27131 0.630174
Pt 5.85 15.11101 2.775041 4.085952 0.974325 4.224556 0.679167
Cu 3.48 11.7733 2.553511 3.643487 0.580449 2.363485 0.700843
Ag 2.94 17.07046 2.890148 4.030509 0.490617 1.908326 0.717068
Au 3.81 16.95422 2.883573 5.332917 0.63573 4.348807 0.540712
Rh 5.74 13.732752.6879694.961351 0.957049 6.521024 0.541782
Ir 6.94 14.14789 2.714786 3.9230091.157442 4.833891 0.692016
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i-th co-ordination sphere. Finally, using Eq. (14), we obtain parameter
n as a function of the only dimensionless experimental parameter
v =VuK/Ewn, n=n(y), as well as two remaining potential parameters:

e(x) = —e, / Y(x.((x) and a(y) = d / x,((x)) - (23)

Here, e, = E.n/Na is the cohesive energy per atom, and d is the experi-
mentally measured distance between the nearest atoms in b.c.c., f.c.c.
or h.c.p. crystals.

4. MODELLING INTERATOMIC POTENTIALS FOR CHEMICALLY-
DIFFERENT TYPES’ ATOMS

In present section, we will propose some simple ideas, which allow con-
structing the interatomic potential for two chemically-different atoms
A and B, shown schematically in Fig. 2. These atoms are placed at some
interatomic distance rag=(ra+rs)/2, where ra and rs denote the bond
length for A—A- or B-B-type interacting atoms, respectively. Here, fis
a force taking zero value, if atoms A and B are at their equilibrium dis-
tances: ra=aa and rs=as. However, the interaction forces acting be-
tween the atoms (all equal due to Newton’s third law) will change sup-
posedly linearly, if ra and rg will experience some small changes:
ra=aa+ daa and rg = ag + dag, as follows from equations below:

f=k0a, and f = kda, . (24)
r, o2

rAB

rga=(r,+ry)/2

Fig. 2. The scheme represents two ball-shaped chemically-different atoms A
and B producing weak forces, when the distance between them slightly chang-
es.
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Here, ka, ks are the elastic-bond stiffness parameters introduced in
previous section. A similar relationship can be supposedly written for
the A—B bonds:

f = k,p0a,,, where da,, = (6a, +da;) /2. (25)

Combining these equations, one can obtain relationships for the elas-
tic-bond stiffness parameters for the A—B-type interatomic bonds as
function of the stiffness parameters for the A—A and B—B ones, respec-
tively:

1/ by =1/ by +1/ k) /2. (26)

Along with this important equation, one can use a similar additive rule
for the equilibrium bond length a. Besides, the elastic cut-off distance
cap introduced in the previous section will be represented generally
consisting of the half-additive contribution (ca + cg)/2 and a difference
cis = Cap — (¢, +¢5) /2 asindicated in Eq. (27):

Ay =(a, +ag)/2,c,5 =(cy, +¢3)/ 2+ iy - (27)
Later, we will show that this so-called c-excess parameter c}}; is small,
but nevertheless, plays a very important role. These three relation-
ships give us full description of all three parameters for the Lennard-
Jones and Morse potentials, or any other three-parameter potentials as
well. In particular, the bonding energy between the A—B atoms can be
easily found from the following equation:

Can / €an = (€3 /&5 + €5/ 85) /2. (28)

One can also obtain the following relationships for the exponent pa-
rameters n, [ of the Lennard-Jones and Morse potentials:
nap= BAB = aAB/CAB-

Equation (28) is important for many applications for ordered or dis-
ordered binary alloys to predict their thermodynamic properties at dif-
ferent atomic concentrations.

In order to analyse and discuss this equation, it is more convenient
to expressitin a dimensionless form:

1 _[Ci/CiB+c}§/CiB
(eap/8) \(ey/8) (eg/€)

One can also express parameters €a, €g as follow:

€, t&p

J/Z, where ¢ = (29)

€y =(e5 te5)/2+ (e, —€5) /2,65 =(g, +€5)/2—(g, —€5) /2. (30)
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The same can be done for parameters ca, cg as well:
cy =(cy+eg)/2+(cy —cg)/2,¢c5=(cy +cg)/2—(cy, —c)/2 (31)
or the corresponding dimensionless relationships:
€, /e=1+(e, —€5) /26,65 /e=1—(g, —€3)/ 2¢ (32)
and
Cyh/Cag=1l+(c, —cg)/2¢,c5/cChyg=1—(c, —c3)/ 2c. (33)

Therefore, Eq. (28) is expressed through the following two dimen-
sionless parameters with ¢ =(ca + ¢g)/2 and & = (ga + €5)/2:

Wy = (€4 =€) / 2¢ (wyp| < 1), 0,5 = (85 —85) / 28 (0,5 <D, (34)

So, finally, from Eq. (28)—(33), we obtain:

2
—1 :l[ij ((]'—i_LUAB)2 +(1_wAB)2], (35)
(g /8) 2\ cp 1+o,; 1-0,,
and then find:
g e V(A+we) (A-wo))  (ew )
ﬂzz(ﬂ)[ ), (L=t J {ﬂj Fp(©,010,5) - (36)
€ c 1+, 1-0,; c

One can observe (see Fig. 3) that Fas(was, was) takes exactly unit
value, Fas(was, was) = 1, everywhere at the straight line was = was with-
in the square box region -1<wap<1 and -1<was<1; however,
Fap(was, was) < 1in other cases.

Therefore, in this section, we have proposed some simple ideas,
which allowed constructing the interatomic-potential parameters for
two chemically-different atoms A and B.

For this aim, we have considered the interatomic-distance changes
daa(f), 68r(f), dan(f) produced by the same weak force f applied to A—A,
B-B and A-B atomic pairs. We also assumed that, similarly to the
equilibrium interatomic-bond length rule: aap = (aas + aas)/2, the addi-
tional distance changes will follow the same rule: 8ap = (8as + das)/2. So,
the important relationship between the interatomic-stiffness parame-
ters, 1/kas=(1/ka+ 1/kz), has been obtained in Eq. (25). It also gives a
corresponding relationship for the energy coupling parameters:

2 2 2
Cap /€ap =(Cy /€4 +C5 /85) /2.

Finally, introducing two new parameters was=(ca— cs)(ca+ cs) and

oas = (ea — €p)(€a + €8), One can obtain a fully dimensionless relationship:
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a b

Fig. 3. Representing 3D image of the Fag(®was, wag)-surface calculated from
Eq. (36) (a); representing 2D image of the Fap(was, wap)-surface calculated
from Eq. (36) (b). Here, X as=was = (ca— cs)(Ca+ CB), Yap= ®ap = (€a— &B)(€a + €B)
and Zag = Fap(®as, Wag).

€ap /€= (Cyp /C)ZFAB((DAB’wAB)’ 37)

where ¢c=(ca+cs)/2, e=(ea+£8)/2, and Fap(was, was) is the function de-
fined in Eq. (36). In present subsection in Eq. (27), we have also as-
sumed that c,; = c+cy; and obtained Eq. (36). Therefore, there is a
serious reason to introduce a new positively definite function
Eap (@ Wap) =(Cap /0 =+ /)’ ~1+2¢5% /¢, which depends
on the same parameters, like Fas(was, was) does. As Fap(was, was) and
gan(was, was) must approach to the unit value as wag — 0 and was — 0,
both these functions can be expanded as Fap(®as, wWas) ~ 1 — (0ap — wag)?
and Zan(Was, wWap) = 1+ (P1((DAB)2 + PowasWag + Pg(wAB)Z) in this limit, ac-
cordingly. The fact that these expansions do not contain the linear
terms with respect to parameters wap, was is due to the inversion-
symmetry requirement: gap(®as, Was) = gas(—was, —Was). Therefore, in
this case we will have:

€an /€~ 1+ (B - Doy + Po,Ww,, + Bway). (38)

Here, P1, P> and P; are some fitting constants, which should be found
from the analysis of some (minimum three) binary phase diagrams.

We are not going to discuss the appropriate procedure for that in de-
tails in the present paper and will do that somewhere else. We should on-
ly to mention that, for instance, it is convenient to consider the disor-
dered binary alloys like f.c.c. lattice-based Cu—Ni, Ni—-Au and Cu—Rh.
All of them have a good solubility at high temperatures, but undergo
decomposition reactions below some corresponding characteristic tem-
peratures Tw.x and concentrations xma.x. In case of Cu—Ni alloy, these
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points are Ti.x=355°C, Xmx=0.673; for Ni—Au alloy, they are
Thax =812°C, Xmax=0.29; and for Cu—Rh alloy, they are Tu..=812°C,
Xmax = 0.29 [15]. Within the mean self-consistent field approximation,
there is a simple relationship between these points and the interchange
energy £™°" [16]: BT max/(221/e™"") = Xmax(1l — Xmax) describing the spi-
nodal curve, if the nearest-neighbour interaction approximation is
adopted, where Th.x is the absolute temperature in [K], and z; =12 is the
first co-ordination number in this case of f.c.c. lattice.
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