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A method for taking into account the long-range potential of atoms within
the framework of the hard-sphere model is proposed. As shown, the thermo-
dynamic quantities can be represented as a sum of three contributions—that
of an ideal gas, the interaction of hard spheres, and the long-range potential.
In the leading approximation on density, the corrections to the virial coeffi-
cient and heat capacity due to the smooth component of the potential are cal-
culated. Attention is drawn to the fact that the effects determined by the
long-range part of the potential can be described within the scope of the self-
consistent field model.
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3amnpoIIoHOBAaHO METOJY BpPaxyBaHHS JAJEKOCSKHOTO MOTEHIIANYy aTOMiB y
paMkax mozeii TBepaux cdep. Iloxkasawmo, 110 TepMOAMHAMIUHI BeIHUYNHU
MOKHA MIPECTABUTH Y BUTJIAAL CYMH TPhOX BHECKiB — ifleasibHOTO rasy, B3ae-
Mozii TBepaux cdep i faJeKoCcAKHOTO NOTEHIiANy. B ocHOBHOMY 3a I'yCTHHOIO
HabJIM)KEeHHI 00YMCIJIeHO TOIPAaBKY J0 BipisaabHOrO KoedimienTa Ta Temnomict-
KOCTH JIJIsI TIJTaBHOI CKJIAMOBOI ITOTEHITiANY. 3BePHEHO yBary Ha Te, 1110 e)eKTH,
AKi BH3HAUYAIOTHCA NAJTEKOCAMKHOIO CKJIQJAOBOIO MHOTEHIIANYy, MOXKYTbH OyTH
OIlMCaHi B paMKaX MOJeJII0 CAMOY3TO/[3KEHOT0 IOJIA.

KarouoBi cioBa: ras, piguHa, IOTEHI[iAJ TBepAoi chepu, NATeKOCIKHUN I10-
TEHIiAJ, BipiAAbHUH Koe(dillieHT, TEeIJIOMiCTKiCTDb, CAMOY3TroIsKeHe II0JIE.
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1.INTRODUCTION

In the theory of classical manyparticle systems, an important role is
played by the model of hard spheres [1-5]. Although it is not possible
to calculate the configuration integral even in the case of such a simple
pair interaction potential, a sufficiently large number of virial coeffi-
cients are known here for low-density systems. The first four coeffi-
cients are known exactly, and higher order coefficients are calculated
by numerical methods and the Monte Carlo method [1-5]. Within the
framework of the hard-sphere model, there is also an exact solution of
the Percus—Yevick integral equation for the pair correlation function
[6, 7]. A significant drawback of the hard-sphere model is that the con-
figuration integral and virial coefficients for it do not depend on tem-
perature. In more realistic pair potentials, which depend only on the
distance between particles, as a rule, it is possible to distinguish a re-
gion of strong repulsion at small distances and a rather smoothly vary-
ing part of the potential at large distances. The repulsive part usually
differs little from the potential of hard spheres, so it is natural to mod-
el it by the potential of a hard sphere and, along with this, take into ac-
count the contribution to thermodynamic quantities of the long-range
part of the potential.

In this work, based on such a decomposition of the pair potential, a
method is proposed for calculating the thermodynamic characteristics
of a gas and a liquid. It is shown that the free energy and thermody-
namic quantities such as the pressure, entropy, heat capacity, chemi-
cal potential can be represented as a sum of three contributions—that
of an ideal gas, the interaction of hard spheres, and the long-range po-
tential. Corrections for the long-range part of the potential to thermo-
dynamic quantities, in particular to the virial coefficient and heat ca-
pacity, are calculated in the leading approximation on density. It is
noted that the self-consistent field model is applicable to describe the
long-range interaction.

2. THERMODYNAMIC RELATION IN THE MODEL OF HARD
SPHERES WITH ACCOUNT OF THE LONG-RANGE PART OF THE
POTENTIAL

The free energy of a system of N particles F=-TInZy is calculated
through the partition function, which can be represented as

r 3N QN
ZN :(Xoj ma (1)
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where

1/2
A= o) @

is the thermal de Broglie wavelength, & is the Planck’s constant, T is
the temperature, m is the mass of an atom. The configuration integral
in (1) is defined by the formula

1.
Q= rs—wf e"dg,
0 3)

where the designations are used: g = {ri, rs,...,ry}, dqg = dridrs,...,dry
and f=1/T. In formulas (1) and (3), a certain characteristic distance ro
is introduced, which determines the conditional size of an atom. In
what follows, this parameter will signify the radius of a hard sphere.
The interaction between particles is realized through the pair poten-
tial, so that in (3)

Ulg)= Y U(n), @

N2i>j>1

where for brevity r;;= |- r; |. Then the exponent in (3) can be written

in the form ¢ = I1 ¢ We choose the potential of the pair-
N2i>j>1

wise interaction of atoms as a sum of the potential of hard spheres

Ug(r;) and the long-range part Ur(ry)):

U(r,)=Uy () + U, () (5)
where

o0, r<ry,
Uy (1) =
0, r>r,.

(6)

The structure of the form (5) is inherent, for example, for the Suth-
erland potential

0, r; < Ty
6
0= (o o
—g| 2|, r, > T,
T

A similar form is characteristic for other model potentials. There-
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fore, for the modified Lennard—Jones potential, we have

<r

0, r 0°

ij

U(’}j)z 4 (r_OJ _{r_OJ s Ty > T 8)

9
where

B(x) B 1, x>0,
o, x <0, (10)

is the stepwise function. With such decomposition, the full configura-
tion integral can be represented as a sum

Q, =" +@", (11)

where

Iy N1 \ Ty N2k>r>1

Thus, for potentials that have the form of a sum of the potential of
hard spheres and the smooth long-range part, the configuration inte-
gral also has the form of a sum of contributions from the potential of
hard spheres and the long-range part (11). It is convenient to introduce
the “reduced” configuration integrals

s _ QY <) _ Q)

= ; = , (13)
YT QY VT QP

where Q(O) =(V/r? v is the configuration integral of an ideal gas. Then
N 0

the free energy can be written as a sum of three contributions
F=F0+FH+FL, where

F,=-NTIn (%j (14)
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is the free energy of an ideal gas, v = V/N is the volume per one particle,
F, =-TInQ\" (15)

is the contribution from collisions of hard spheres, and

5(L)
F, = —Tln(l +%J
Qy
(16)
is the contribrtinn from the long-range part of the interaction. Note
that not only Q(L) , but also the configuration integral of the model of
hard spheres QI(\,H) enters into Fr. Other thermodynamic quantities can
also be represented as a sum of three contributions. So far, no approx-
imations have been made in deriving the formulas.

3. CALCULATION OF CORRECTIONS FOR THE LONG-RANGE
PART OF THE POTENTIAL

In a sufficiently dilute system, it is possible to account for the interac-
tion using the group expansion in powers of density [1-5]. For this
purpose, the transition to Mayer functions

) =0 %1 a)-e o an

To

is employed. Taking into account the first correction for the dimen-
sionless density nv,=uv./v, where v, = 4nry /3 is the ‘volume’ of an at-

om, for the configuration integral of the model of hard spheres, we
have

QU n1-22e (18)

Note that the use of the formula In(1 + x) = x in calculating the free en-
ergy (15) is valid under the condition N <v/v, that is satisfied for a
highly dilute gas[3].

In the leading approximation on density, the configuration integral
for the long-range part of the potential is given by the formula

<) N(N-1)4rn7 -
(L) _ 2| ,BUL(r) _
Qy’ = 5 = ;[drr [e 1]. (19)

Taking into account the main correction to formulas of the theory of
an ideal gas in the ratio v/v,, the full free energy takes the form
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F= —NTln(UejJrﬂ& 5

NI U—ENT%J(T), (20)

where
J(T) = dex2 e —1]. (21)
1

Let us present formulas for the basic thermodynamic quantities in
this approximation. The gas equation of state has the form

p=Z(1+§j. (22)
|0) |0)

The virial coefficient B in the model of hard spheres is independent
of temperature By =v,/2. The calculation of the virial coefficient with
account of the long-range part of the potential based on the formulas
(16), (17), (21) gives

B(T)=B,[1-3J(T)], (23)

For example, for the Sutherland potential (7), the integral (21) has the
form

c T 1 1ty
J(T):!dxx {e _1}_5\/%1/32(6 -1). (24)

Accounting for the long-range component of the potential leads to the
fact that at low temperatures the virial coefficient becomes negative,
changing sign at the Boyle temperature Tz, which is determined by the
formula

J(T,)==. (25)

In the case of the Sutherland potential Ts=1.17¢.
For the entropy S=- (0F/0T)v, y in this approximation, we have

5/2
S=NIn| 2% _Nv, BNy pdd ) (26)
A 2 v 2 v aT

Note that the contribution to the entropy from collisions of hard
spheres does not depend on temperature, and the contribution to the
temperature dependence of entropy comes only from the long-range
interaction.

The energy E =F + ST is determined by the formula
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E-3NT[14 073 (27)
2 v dT

Collisions of hard spheres also do not contribute to the total energy.
Let us also give a formula for the chemical potential u=—(0F/ON)r, v:

uz—Tln(%ijTU—U"—gTU—U"J. (28)

Since the contribution to the entropy of collisions of hard spheres
does not depend on temperature, such collisions do not contribute to
the heat capacity either. The contribution to the heat capacity is de-
termined only by the long-range part of the interaction potential

2
c, =3n[1+% 2ﬂ+Tdi . (29)
2 v dT '~ dT

At high temperatures (T >>¢) for the Sutherland potential (7),
J =(1/3)(e/T) + (1/18)(¢/T)?, so that the heat capacity with account of the
main correction for the long-range interaction takes the form

3 v, &
C, =§N(1+F“9T2J. (30)
Then for energy, we have
2
E=§NT 1_&3_i8_2 ) (31)
2 3T 90T

It is obvious that Cy=— (0E/0T)y, n.

4. CONCLUSIONS

Since the potential of repulsion of atoms at small distances is usually
known poorly, it is quite acceptable to use the model of hard spheres to
take into account the short-range correlations in systems of many par-
ticles. Along with a short-range repulsion, the realistic potential con-
tains a smooth component describing the interaction of atoms at long
distances. The description of contribution of the long-range interac-
tion to the thermodynamic quantities of dilute systems has been con-
sidered in this work.

The method of decomposition of the pair potential of interaction be-
tween particles into the hard core and the long-range part, proposed in
this paper, is important in connection with the question of possibility
of using the self-consistent field method in the theory of dense sys-
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tems. The idea of using the self-consistent field method, which allows
to effectively describing phase transitions, in the theory of solids was
proposed many years ago by Vlasov [8]. Many leading physicists sub-
jected Vlasov’s approach to criticism. Nevertheless, the self-consistent
field method, although without firm justification, was later employed
as well to construct the statistical theory of the crystal state [9, 10] and
the thermodynamic perturbation theory [11].

Now, apparently, we can conclude that both Vlasov and his critics
were right. Obviously, the short-range correlations of particles cannot
be described in the framework of the self-consistent field model, but it
is natural to consider them in the framework of the model of hard
spheres. The interaction of atoms through a smooth long-range part of
the potential can now be taken into account by the self-consistent field
method. Therefore, the decomposition of the potential into the short-
range and long-range parts and the using of the mean-field theory to
take into account the smooth part of the interaction may be important
for the further development of the theory of dense gases, liquids, and
solids.
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