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We examine thin film on a dielectric substrate (vacuum/Al/SiO2) in the stabi-
lized jelly model. We investigate the surface and size effects on the effective 

potential and the electron work function for the weak quantization regime. 

We find that a dielectric environment generally leads to the decrease of the 

work function. We introduce the position of a conduction band for the dielec-
tric as the input parameter in the self-consistency procedure. The effect of 

dielectric confinement for the energy characteristics of the asymmetric met-
al–dielectric sandwiches is reduced to only by the surface-area weighted av-
erage value of the dielectric constants. This conclusion follows from the ap-
plication of the Gauss theorem for a conducting sphere with an inhomogene-
ous dielectric coating. The flow of electrons from the dielectric face to the 

vacuum one due to the contact-potential difference manifests itself in the 

appearance of a potential barrier above the vacuum level or positive values of 

the effective potential. The barrier height depends on the used local or non-
local approximation of the exchange–correlation energy. The nontrivial 
origin and behaviour of the calculated effective potential on the vacuum side 

of the film, as well as the reasons for it, are discussed. In the focus of our rep-
resentations, we analyse the recent results of measurements of the contact-
potential difference depending on the number of Si atoms deposited on the 

free face of ytterbium nanofilms on the Si(111) substrates. Comparison and 

discrepancies between our self-consistent calculations for simple metals and 

these experiments are discussed. 
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jelly models. 

В моделю стабільного желе для режиму слабкого квантування досліджено 

вплив поверхневого та розмірного ефектів на ефективний потенціял і ро-
боту виходу електрона металевої наноплівки на діелектричній підклади-
нці (вакуум/Al/SiO2). Виявлено, що контакт з діелектриком, як правило, 
приводить до зменшення роботи виходу електрона. У процедурі самоузго-
дження в якості вхідного параметра введено положення зони провідности 

для діелектрика. Вплив контакту з діелектриками на енергетичні харак-
теристики асиметричних метал-діелектричних сандвічей зводиться лише 

до середнього зваженого за площею контакту значення діелектричних 

проникностей обкладинок. Цей результат є наслідком застосування Ґау-
сової теореми для провідної сфери з неоднорідним діелектричним покрит-
тям. Зсув електронів у плівці від діелектричної підкладинки до вакуум-
ного інтерфейсу за рахунок контактної ріжниці потенціялів проявляється 

у появі потенціяльного бар’єру над вакуумним рівнем або позитивних 

значень ефективного потенціялу. Висота бар’єру залежить від використо-
вуваного локального або нелокального наближення для обмінно-
кореляційної енергії. Обговорюються нетривіяльна поведінка розрахова-
ного ефективного потенціялу на вакуумній стороні плівки, а також при-
чини цього. На основі одержаних результатів проаналізовано нещодавні 
результати мірянь контактної ріжниці потенціялів в залежності від кіль-
кости атомів Si, нанесених на вільну грань наноплівок ітербію на підкла-
динці Si(111). Обговорюються порівняння та розбіжності між нашими 

самоузгодженими розрахунками для простих металів і цими експеримен-
тами. 

Ключові слова: поверхневі явища, робота виходу електрона, поверхневий 

потенціял, контактна ріжниця потенціялів, метал-діелектричні інтер-
фейси, сандвічі, плівки, модель стабільного желе. 

(Received August 12, 2023; in final version, August 13, 2023) 
  

1. INTRODUCTION 

Thin films of metals, dielectrics and semiconductors are widely used in 

many fields of technology, primarily in micro- and nanoelectronics. 
Physical processes in thin films proceed differently than in bulk mate-
rials. As a result, film elements have characteristics that differ from 

those of bulk samples and allow one to observe effects that are not 

characteristic of bulk samples. 
 Films in the nanometer range exhibit the size and quantum effects. 
The Friedel oscillations of the electron density are always present in a 

metallic film. Their amplitude depends on the contact with the sub-
strate. For thick films, these oscillations are localized near the surface 

and decay deep into the bulk of the film. With a decrease in the film 

thickness, the quantum-size density oscillations (standing waves) 
begin to appear, superimposed on the Friedel oscillations. In addition, 
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the substrate material can have a significant effect on the energy char-
acteristics of thin films [1, 2]. One of the fundamental characteristics 

of metal nanostructures is the electron work function. 
 The possibility of light localization makes it possible to demon-
strate, based on the surface plasmon resonance spectroscopy, their ef-
ficiency and performance as the hybrid plasmonic waveguides, the bio-
logical and chemical sensors, nanoantennas, metamaterials, and the 

highly reflective coatings (see Refs. [3–5] and references therein). 
 The complexity of obtaining objects and measurement methods is 

evidenced by a relatively small number of experiments devoted, as a 

rule, to quantum size effects [5–12]. 
 Various approaches and models make it possible to calculate the 

electron structure of the slabs suspended in vacuum and consisting of 

several monolayers (ML), finite in one direction and quasi-continuous 

in two other directions [13–17]. Within the framework of the density 

functional theory and the stabilized jelly, we calculated the electron 

characteristics of metal–dielectric nanosandwiches for the strong 

quantization regime [18–21]. 
 The aim of the present work is the calculation and analysis of the en-
ergy diagram, the electron work function, and near-surface space dis-
tribution of a one-electron effective potential for an aluminium film on 

a promising substrate SiO2 [22]. 
 To control calculations by the Kohn–Sham method of the energy di-
agram of a metal film with an inhomogeneous dielectric coating, the 

simplest electrostatic analogue of the problem, for example, about a 

point charge [23] at the interface with several dielectrics, is required. 

Subsequently, we will present its solution in the form necessary for our 

purposes, as it was proposed in [21]. 

2. ELECTROSTATIC ANALOGUE 

Let us consider a conducting sphere in an inhomogeneous dielectric 

environment: from a straight line passing through the centre of the 

sphere of radius R and charge Q, the i half-planes diverge fan-shaped, 

forming dihedral angles β1, β2, …, βi such that (Fig. 1, a) 

 i
i

β = π∑ 2 .  

In the region r > R, the space inside each of the corners is filled with 

homogeneous dielectrics with constants ε1, ε2, …, εi, respectively. De-
termining the potential on the surface of a sphere, we first assume that 

the general form of the solution for the potential in the region r ≥ R has 

the form 

 i iC Q rφ = .  
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 From the boundary conditions for the equality of the potential at the 

corresponding boundaries with dielectrics, we obtain 

 R R R
i iC Cφ = φ = = φ ⇒ =1 2  .  

 The unknown coefficient C is determined by the Gauss theorem 

 
S

d Q= π∫ D S 4


. (1) 

To find the area of a segment Si = αiS on a radius R (αi is the fraction of 

the surface covered by a dielectric with a constant εi), we introduce a z-
axis along the line of separation of the dielectrics. Then, according to 

the Cavalieri’s principle, each i-th area will be determined by the angle 

βi (Fig. 1, a) or 

 i
i

β
α =

π2
,  

and the integral in Eq. (1) is divided into i parts 

 n
i i

i

S D Qα = π∑ 4 . (2) 

 Substituting the area of the sphere and 
n
i iD CQ R= ε 2 , we get 

C = ε1  , where 

 i i
i

ε ≡ ε α∑ . (3) 

 

Fig. 1. The illustrations of a conducting sphere in contact with dielectrics (a) 
(the planes separating the dielectrics are perpendicular to the plane of the 

figure), metal film in the contacts (b). 
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 Thus, the area-weighted average dielectric constant ε  is introduced 

into the theory, and the potential of the sphere surface 
R Q Rφ = ε( )  is 

common for all contacts with dielectrics, as well as the asymptotics of 

the potential in the limit r/R >> 1: 

 
Q

r
r

φ =
ε

( )


. (4) 

 For a metal sphere in contact with two dielectrics (inhomogeneous 

coating), we have 

 ε ε= ε α + α1 1 2 2
 . (5) 

 Mentally ‘flattening’ the metal ball [21], let us consider a metal 
film. In the Cartesian co-ordinate system, it is more convenient to use a 

macroscopic metal cube [24] with a volume Ω = Lx×Ly×Lz, symmetrical-
ly located between the dielectrics in the plane xy. Then, flattening the 

cube along the z-axis, we consider a slab with a thickness L (Fig. 1, b). 
Neglecting the ends, the total film area S, parameters α and ε  have the 

trivial form: 

 x y
x

L
S L L O

L

 
= + α = α = ε + ε 

 
=1 2 2

1 1
2 , , 1 )

2
(

2
 . (6) 

 Next, we use the Kohn–Sham method to analyse the energy diagram 

for the passive contact of film with an insulator. Previously, we con-
sidered such a problem for a quantum metal film in dielectric environ-
ment [18–20]. 

3. MODEL OF FILM 

For an electrically neutral metal film (slab), the total charge of the 

subsystem of conduction electrons and ions is zero. Therefore, there is 

no electric field at infinity.  
 In the stabilized jelly model, the field is nonzero only near the sur-
face, where the electron density profile n(z) changes from the bulk val-
ue in metal bulk = ρn  to zero beyond the boundary of the positive ion 

charge distribution given in a stepwise form 

 

z L

z n z L n
r

z L

 < −

ρ = ≤ = π
 >

3
s

0, 2,

1
( ) , 2, ,

(4 3)

0, 2.

 (7) 

 Let us conventionally divide the space distribution of conduction 
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electrons into regions (Fig. 1, b): 

 n z n z n z n z= + +1 0 2( ) ( ) ( ) ( ) ,  

in which the charges are accumulated 

 ( )
L L

L

Q e S n z dz Q e S z dz
−

−∞ −

= − = + ρ∫ ∫
/2 /2

1
el 1 ion

/2

1 1
( ) , ( )

2 2
,  

(8) 

 ( ) ( )
L

L L

Q e S n z dz Q e S n z dz
∞

−

= − = −∫ ∫
/2

0 2
el 0 el 2

/2 /2

1 1
( ) , ( )

2 2
,  

where e is the unit positive charge. The sum of charges satisfies the 

electrical-neutrality condition 

 ( ) ( ) ( )Q Q Q Q++ + =1 0 2
ion el el el 0 . (9) 

 The spatial electron distribution is determined by the Poisson equa-
tion 

 
z

e
z

z n z z

ν
∇ φ = − π

ε
ν = − ρ

2 ( )
4 ,

( )

( ) ( ) ( ).

 (10) 

 The step function 

 

z L

z z L

z L

ε < −


ε = ε ≤
ε >

1

(0)

2

, 2,

( ) , 2,

, 2

 (11) 

fixes the area of contacts with vacuum and dielectric; ε(0)
 = 1 (ions and 

electrons in a metal are always in a vacuum). 
 The count of the potential is selected from its value φ = 0 at a sphere 

of infinite radius (this is true for a finite sample of arbitrary shape). 
 From the joint solution of the Kohn–Sham equations and the Pois-
son equation (10), the equilibrium profiles n(z), φ(z), veff(z) and the 

electron work function W under the condition of the co-ordinate-
independent chemical potential of electrons are found: 

 x y z Wµ ε ε = = −1 2( , , , , ) const . (12) 

Thus, condition (12) also fixes the mutual influence of dielectrics on 

the asymptotic potential veff(z) behaviour [25]. 
 The one-electron effective potential is defined as the sum 
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 v z e z v z v L z L z= φ + + δ θ + θ −eff xc WS
( ) ( ) ( ) ( 2 ) ( 2 ) , (13) 

where vxc is the exchange–correlation potential in the local density ap-
proximation (LDA), <δv>WS is the stabilization potential (zero point 

energy), and θ(z) is the Heaviside unit function. 
 It is assumed that the electron escaping from the metal film is ac-
companied by a spherically symmetric hole, which is trapped in the im-
age plane and spreads out within this plane as the electron moves apart 

from the surface [26]. 
 In the version of [20], the Ritz method was used to obtain an analyti-
cal expression for the nonlocal Coulomb potential of a hole, which was 

then matched on the image plane with the local exchange–correlation 

potential calculated by the Kohn–Sham method under condition (12). 

Thus, the effective potential is self-consistently and asymmetrically 

matched outside the film with the image potentials (‘short-range as-
ymptotics’ for the faces) 

 
e e

z L z L
+ −

ε + ε −

2 2

1 2

and
4 ( 2) 4 ( 2)

. (14) 

 For thin films, in which the bottom of the effective potential is not 

flat due to the Friedel and size oscillations of the electron density, the 

work function, as for clusters of atoms, is defined as 

 FW = −ε . (15) 

Here, the Fermi energy εF < 0 is counted down the energy scale from a 

value φ = 0 on infinity. 
 The convergence problems of the iterative procedure significantly 

complicate the calculations for large film thicknesses, when the quan-
tum-size oscillations of the work function are negligibly small. 
 For thick films, in which the bottom of the one-electron effective 

potential in film is flat in the vicinity of z = 0, the work function can be 

found, as in a semi-infinite metal, in the form: 

 FW v v e v v m n= − − ε = φ + + δ ε = π2 2 2/3
eff eff xc FWS

, , ( (2 ))(3 ) , (16) 

where effv  is the bottom of the conduction band in a massive metal, 

ε > 0F  is the Fermi energy of a homogeneous degenerate electron gas 

in the Sommerfeld model (here, it is already generally accepted to 

choose εF  a reading up the energy scale from <eff 0).v  
 If the terms φ  and xcv  are of Coulomb origin, then, in addition to 

the exchange–correlation contribution, <δv>WS also contains the non-
Coulomb contribution of εF . 
 In Figure 1, b pluses and minuses show the distribution of charges 
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providing the ordinary dipole barrier − φ( )e  near faces. 

4. CALCULATION RESULTS AND DISCUSSION 

Calculations are made for the asymmetric and symmetric ‘sandwiches’ 

 

ε ε

ε ε ε = ε + ε

ε ε χ

  

1 2

1
1 22

1 2 2

: { | Al | },

: { | Al | }, ( ),

: { | Al | , }

1

2

3

 (17) 

in two approximations (χ2 = 0 and χ2 ≠ 0): vacuum on the left; polycrys-
talline Al film (rs = 2.07a0, a0 is the Bohr radius) of thickness 

L = 32a0 = 7 ML in the centre; SiO2 on the right (ε2 = 4, χ2 = 1.1 eV) with-
in the framework of our approaches [18–20]. For sandwich 3, a non-
local exchange–correlation potential was used [19]. 
 Figures 2 and 3 demonstrate the most interesting fragments of the 

equilibrium profiles of the electron density and electrostatic potential. 

The tails of electronic profiles 1 and 3 almost coincide, but at the same 

time, they shift asymmetrically relative to the symmetrical sandwich 2 

towards the dielectric. For all cases, the electronic charge 
(0)
elQ  in the 

z L≤ 2  area remains almost the same. This is manifested in the equal-
ity of the potential for points A and B in Fig. 3, which exactly corre-
sponds to theorem (1) and result (4). 
 The tails in Figure 2, which make up the charges 

(1)
elQ  and 

(2)
el ,Q  visu-

ally differ slightly. However, these tails are present in the Poisson 

equation with different weights: n1(z)/ε1 and n2(z)/ε2. Due to the sig-

 

Fig. 2. Calculated electron density profiles in accordance with the notation 

(17). 



EFFECT OF DIELECTRIC CONFINEMENT ON ENERGETICS OF QUANTUM FILMS 943 

nificant difference in ε1 and ε2, a small difference in n1 and n2 cannot 

fundamentally affect the wings of the potential φ(z) (Fig. 3) and the 

Maxwellian stress tensor in the system. 
 The boundary conditions for φ(z) provide reliable equipotential sur-
faces passing through points A, B, and = ∞.z  For sandwich 2, the 

wings of the potential are expectedly symmetrical. For a sandwich in 

approximations 1 and 3, as well as for small film thicknesses, the po-
tential wings behave quite differently. 
 In Figure 3, the potential wings in the dielectric for 1 and 3 lie lower 

than for the symmetrical sandwich 2 and tend to φ = 0, much more 

slowly. It is important not only that in this region the action of the 

charge + >(0)
ion el( ) 0Q Q  predominates, but also its spatial distribution 

inside the film. Indeed, the electronic charge inside the film is distrib-
uted asymmetrically (the extreme peak on the left is higher than the 

extreme peak on the right), which creates an additional dipole between 

the left and right faces (it is indicated in Fig. 2 by large pluses and mi-
nuses). This leads to the fact that in vacuum the potential φ(z) increas-
es sharply (the effect of two infinitely charged ‘planes’), exceeding the 

potential for a symmetrical sandwich, crosses φ = 0, reaches a maxi-
mum, crosses again φ = 0 and tends to φ = 0 at infinity from the lower 

half-plane. Thus, Figure 2 shows the flow of electrons inside the film 

from the dielectric side to the vacuum side due to the contact potential 
difference. In turn, this is clearly manifested in the appearance of a 

potential barrier above the vacuum level or, in other words, positive 

values on the left wing of the potential in Fig. 3. The contact potential 
difference is determined by the dependence of the work function [27] 

of half-infinite Al in passive contact with a dielectric (Fig. 4) or, 
equivalently, of an ‘infinitely’ thickness film in identical faces with 

constant ε. 

 

Fig. 3. Calculated electrostatic potential profiles. 
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 The difference in versions 1 and 3 did not affect the value of 

εF = −3.17 eV in (15). For comparison, the work function (16) exceeds 

this value by only 5% (weak quantization regime). On the other hand, 
the difference in the versions noticeably changed the wings of the po-
tential veff(z) (Fig. 5). The use of the nonlocal exchange–correlation po-
tential in the iterative procedure led to a significant suppression in 

 

Fig. 4. The work function vs dielectric coating in the absence of size oscilla-
tions. 

 

Fig. 5. Calculated effective potential profiles. 
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vacuum of the potential barrier of the effective potential (now its 

height is only 0.16 eV). For the electrostatic potential, this change is 

much smaller (dependences 1 and 3 are compared in Fig. 3). In the 

z < −L/2 area, effective electric field  

 = −∇eff eff( ) ( ) /E z v z e   

changes sign twice. In theorem (1), apparently, one should make the 

change D → Deff. 
 In a metal, it is not enough to confine oneself to taking into account 

only the electrostatic potential calculated in accordance with the prin-
ciple of superposition; the prevailing contribution to energy is made by 

the exchange–correlation potential due to the small distance between 

electrons rs [26]. Therefore, at distances smaller than the lateral di-
mensions of the film (z << Lx), both asymptotics (14) work. At a much 

greater distance from the faces, when the exchange–correlation effects 

become negligible with increasing distance rs, the superposition princi-
ple is dominant. In this case, one ‘long-range’ asymptotics of the form 

(4) with a weighted average dielectric constant ε  should work. Numeri-
cal investigation of the asymptotic behaviour of the potential does not 

allow the calculation algorithm instability near the vacuum level. 
 To analyse the complex behaviour of the potential, it is necessary to 

go beyond the model with stepwise distributions of a homogeneous pos-
itively charged background (7) and the dielectric constant in (11). It is 

also necessary to take into account not only the response of the elec-
tronic, but also the ionic subsystem to the presence of a dielectric. If 

atomic planes are introduced into the film model, then the interplanar 

distances will be determined by the balance of forces on the left and 

right on each of them. The effective force acting from the outside on 

the film is due to the inhomogeneous distribution of electrons and 

should lead to its compression in z direction. As the thickness decreas-
es, the role of alternating deformation increases. Most likely, this will 
lead to some refinement of the electron work function, but not a signif-
icant change in the potential wings. 
 Modernization of the stepwise manner into function ε(z) (11) can be 

carried out using, for example, a more realistic inclusion function in 

the region of dielectrics: 

 
z L a z L

z
z L a z L

 ε − ε − + < −ε = ε + 
ε − ε − − − >

(0)
1 1(0)

(0)
2 2

( )(1 exp[( 2) / ]),  2,
( )

( )(1 exp[ ( 2) / ]),  2.
 (18) 

In general, the parameters a1,2 should be comparable with the diame-
ters of dielectric atoms on both sides of the film. Numerically, this 

somewhat softens the asymmetry of the dielectric near the surface and 

lowers the potential barrier in Figs. 3 and 4. The final answer about the 
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presence of anomalies in the behaviour of the potential near the sur-
face can be given by a detailed analysis of the experimental dependenc-
es of the STM tunnelling current on the probe-surface distance. It is 

possible that the variation of the potential affects the rate of adsorp-
tion on the free plate of the film, which is a sensitive point in the de-
sign of sensors. 
 In a recent work [12], it was reported on the study by the Kelvin 

method (contact potential difference) of ytterbium nanofilms at Si 
(111) substrates. The probe fixed changes in the average surface po-
tential e∆ϕ (or local work function of electrons) depending on the num-
ber of Si atoms deposited on the free Yb face. Silicon was deposited in 

portions up to approximately 1 ML. 
 In our calculation scheme, the value e∆ϕ corresponds to the change 

in the effective potential on the image plane veff(z = z0), z0 < −L/2 (see 

Table II in [28]). The value ε1 in the experiment [12] can be estimated 

using the Clausius–Mossotti relation, using the polarizability of the Si 
atom 

3
0(10.17 )a  and detailed information about the islands. Then, 

formula (5) will look like 

 j j
j

+ε α ε= ε∑ 2 2 , (19) 

where j is the number of Si islands on the left face. The transition to 

vacuum means εj = 1, j
j

α =∑ 1 2  that will lead to expression (6). 

 On the one hand, the use of such a concept as the dielectric constant 

for dielectric nanoislands is doubtful, but, on the other hand, the use 

of formula (19) leads to its value being greater than that according to 

formula (18) for ε1 = 1. If we also use Fig. 4 (metal in this case is not 

important, but it is important that the contact is passive), it turns out 

that the work function: the total energy (15) and (16) should decrease 

with the appearance of adsorbent islands. 
 In Ref. [12], the value e∆ϕ for Yb films with a thickness of 7.8 and 

16 ML, on the contrary, increases by approximately 0.02 eV with an 

increase in the Si coverage. 
 The reasons for the opposite change in e∆ϕ and W have already been 

discussed by us earlier [27, 28] (see, for example, formula (23) in [27]). 

There are additional reasons for the discrepancy between theory and 

experiment: (i) the film is not continuous and homogeneous, this is es-
pecially evident for a film with a thickness of 7.8 ML, (ii) the oscilla-
tions of the Fermi energy are consistent with the oscillations of the 

electron pressure on the walls, which leads to size oscillations of the 

film thickness itself and of the potential wings, one of which is used 

for measurements, (iii) when using a probe, edge effects have an influ-
ence. Here, one should also point to the work [29] and the book [30], 

where it was reported on the measurement by means of photoelectron 
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spectroscopy of nonmonotonic curves of the change in the work func-
tion with a decrease in the size of Ag, Al, Fe, Mg particles deposited on 

a quartz substrate. 

5. CONCLUSIONS 

This paper presents the results of the numerical solution of the many-
electron problem: self-consistent profiles of the electron density, po-
tentials, and electron work function for 7 ML thickness polycrystalline 

Al film deposited on a passive insulator SiO2 (asymmetric metal–
dielectric sandwich). An analysis based on the Gauss theorem points to 

the universality of using the constant ε , weighted average over the 

surface area of the contacts with dielectrics. Comparison with the val-
ue of the electrostatic potential calculated by the Kohn–Sham method 

for the film covered homogeneous dielectric ε  confirms the conclu-
sions of classical electrodynamics.  
 The effective force acting on the film from the outside is due to the 

inhomogeneous distribution of electrons and should lead to its size de-
formation. 
 The flow of electrons from the side of the dielectric to the vacuum 

side due to the contact potential difference manifests itself in the ap-
pearance of a barrier above the vacuum level or positive values of the 

effective potential. The barrier height depends on the used local or 

non-local approximation of the exchange–correlation energy. There-
fore, the answer about the presence of anomalies in the behaviour of 

the potential should be sought in the behaviour of the STM tunnelling 

current near the vacuum face of the film. The variation of the potential 
here affects the rate of adsorption on the free plate of the film, which 

is a sensitive point in the design of sensors. 
 The work function and lifetime of a positron in the surface states of 

a metal film is sensitive to the presence of a potential barrier and, if its 

presence is experimentally confirmed, this will require a critical revi-
sion of the measured values. 
 The author is grateful to W. V. Pogosov and A. V. Korotun for read-
ing the manuscript. 
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