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In the paper, dipole—exchange spin waves in a nanotube composed of an easy-
plane ferromagnet in the presence of a spin-polarized current are studied
theoretically. The magnetic dipole—dipole interaction, the exchange interac-
tion, the magnetic anisotropy, the dissipation effects, and influence of the
spin-polarized current are considered. For such spin waves, an equation for
the magnetic potential is obtained and (for the case of longitudinal-radial
waves) solved. As a result, the dispersion law for such waves is found. This
dispersion law is complemented with the relation between the wave-vector
components, which is shown to degenerate into a quasi-one-dimensional val-
ues’ spectrum of the orthogonal wave-vector component nearly everywhere.
As shown, in most cases, influences of the spin-wave dissipation and spin-
polarized current on the real part of its frequency are negligible. Branches
(which correspond to different orthogonal modes) of both the real and imagi-
nary parts of the dispersion law are shown to be close to parabolic ones; dis-
tance between branches increases with increase of the mode number. Pres-
ence of the spin-polarized current can strengthen or weaken the spin-wave
damping, creating the ‘effective dissipation’ and, in some cases, leading to a
spin-wave generation. The condition of such a generation is found as well as
limitations on the transverse modes’ number, for which the generation is
possible. As shown, for typical values of nanosystem parameters, only first
several modes can be excited via such generation (in most cases, only zero
mode or none). The method proposed in the paper can be applied to nanotubes
(and other nanosystems) of more complex configurations.
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VY craTTi TEOPETHUUYHO AOCIiIKEHO AUMOJIbHO-OOMiHHI CIiHOBI XBHMJII B HAHOT-
pyoOmi 3 JIeTKOILJIOIIMHHOTO (pepoMarHeTHMKAa 3a HAABHOCTH  CITiH-
MOJIAPU30BAHOTO CTPYMY. BpaxoBaHO MarHeTHY IUMIOJIL-TIUIIOJLHY B3a€MO-
Iir0, OOMiHHY B3a€MO/Iil0, MAarHETHY aHi30TPOIIi0, e(DeKTH AUCHUIIAIlil T BIJIUB
CIIiH-IOJIAPMB0BAHOTO CTPYyMY. 14 3a3HaUEeHUX CIiIHOBUX XBUJIb OJIEPKAHO Ta
(ma MO3MOBKHBO-PANiITIFHUX XBUJIb) PO3B’I3aHO PiBHAHHSA AJIA MAarHeTHOTO
noreHuiany. SIx pesysnbrar, 3HalIeHO 3aKOH Aucinepcii Takux xBuib. Ileit 3a-
KOH AUCIePCii JOMOBHEHO CHiBBiAHOINEHHAM MijK KOMIIOHEHTAMU XBUJIBOBOTO
BEKTOpa; IIOKas3aHo, IO Ile CIIiBBIOHOINIEHHS MalKe BCIOAU BUPOIKYETHCS B
KBasdWOJHOBUMIpPHHUII CHEeKTep 3HAYEeHb OPTOTrOHAJHbHOI KOMIOHEHTHU XBUJIbO-
Boro BexkTopa. IlokasaHo, 1110 B 6iJIbIITIOCT]I BUNAAKiB BILIMBY AUCHUIIAIi] CIIiHO-
BOI XBMJIi Ta CHiH-TIOJIAPU30BAHOIO CTPYMY Ha HifiCHY YAaCTHUHY il 4acTOTH €
HexToBHO Masumu. [Iokasano, mio riakm (AKi BiAToBiga0Th PisHUM OpPTOTOHA-
JbHUM MOJAM) IK AificHOI, TaK i yABHOI YacTWMH 3aKOHY Auciepcii 61u3bKi 10
napaboJiuHuX; Bigmanp MiK riixkamu 30iJbIIyeTheA 3i 30iabIIIeHHAM HOMEpa
moau. ITpucyTHiCTE CIIiH-TTOJIAPHU30BAHOTO CTPYMY MO:Ke IIOCUJII0OBATHA ab0 mo-
caabJII0BaTH 3TacaHHS CIIiHOBOI XBUJIi, CTBOPIOIOYM «e(PeKTUBHY JUCUIAIII0» 1
B IeAKUX BUIAJAKAX IPUBOAAYM O r'eHepallii criHoBOi XBwJi. S3HANEHO YMO-
BU TaKoOi reHepalrii, a TakoK 00MesKeHHA Ha KiJbKiCTh MOMEepeYHUX MOJ, I
AKUX reHeparid moskauBa. [lokasaHo, 110 414 TUIIOBUX 3HAUEHb ITapaMeTpiB
HAHOCHCTEMHU 34 TaKol r'eHepallii MoKyTh OyTH 30y KeHi JInIe MepIii Kiabka
Moz (y 6iJIbITOCTi BUMAAKIB JIMIIe HYJIbOBa MOJa ab0 KOAHO1). 3aIpoIoHOBa-
HUH y cTaTTi MeTOJ MOXKe OyTH 3aCTOCOBAaHUM 10 HAHOTPYOOK (Ta iHIIIUX HAHO-
cucTeM) OiJIBIN CKJIaJHUX KOHQPIirypaIriii.

Kuarouosi croBa: crniHoBa XBUJIA, HAHOMATrHETU3M, JUIIOJbHO-0O0MiHHA XBUJIA,
depomMarseTHa HAHOTPYOKAa, JErKOIJIOIMHHWII (epoMardeTuK, CIiH-
HOJAPU30BAHUU CTPYM.
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1.INTRODUCTION

Spin waves in magnetically ordered materials represent an actual and
promising topic of research. In particular, spin waves in nanoscale sys-
tems are studied by a new sub-field of solid-state physics—magnonics
[1]. Spin waves in nanosystems are promising for a variety of technical
applications—both current and prospective. These applications con-
cern mostly new devices for data storage, transfer, and processing
[1-3] but are not limited to them. In particular, devices that use spin
waves on nanoscale instead of electric currents—magnon devic-
es—allow for faster, more efficient, and more reliable signal pro-
cessing as well as computation on higher frequencies than current
computer technology [1]. Spin waves can propagate through magnetic
materials with minimal energy loss and can be easily manipulated using
magnetic fields, electric fields, spin currents, or thermal gradients thus
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making them prospective for novel data transfer technologies [1]. These
applications require precise theoretical models of excitation and propaga-
tion of spin waves in various nanosystems, so these models are extensive-
ly developed recently.

Properties of nanostructures—including spin-wave properties—are
known to depend essentially on their size and shape. Therefore, spin
waves are studied in different configurations of nanosystems individ-
ually. Synthesized recently magnetic nanotubes [4, 5] have found a
wide range of technical applications—in particular, in magnetobiolo-
gy. However, spin waves in nanotubes currently attract little atten-
tion. Known theoretical papers on the subject that are closest to the
topic of the current paper are limited to investigating nanotubes com-
posed of either isotropic or uniaxial easy-axis ferromagnets and does
not account for spin wave damping (see, e.g., [6]). Uniaxial easy-plane
ferromagnets, however, possess a number of unique magnetic proper-
ties—in particular, due to a different degree of symmetry compared to
similar systems composed of easy-axis ferromagnets. One should also
note that effects associated with an energy dissipation can either sig-
nificantly influence the pattern of spin waves in the system or be neg-
ligibly small (depending on the wave frequency, dimensions, shape and
material of the system and other factors); see, e.g., [7]. Nevertheless,
dissipative spin waves in nanotubes composed of easy-plane ferromag-
nets currently remain poorly studied.

Magnetic nanostructures, in particular, magnetic nanotubes, can be
used as waveguides for spin waves. Thus, a task of generating spin
waves in these nanostructures becomes actual one. One of the ways of
generating such waves [8] (usually in the microwave range) is using so-
called spin-torque effect: change of the magnetization direction
(switching or precession) in a thin layer of a ferromagnet when a spin-
polarized current passes through it [8-10]. The influence of the spin-
torque effect on the spin-wave pattern of the nanosystem can be either
negligible or essential depending on the current density (see, e.g., [9])
and, therefore, must be considered in a general case. Therefore, inves-
tigation of spin waves in magnetic nanotubes with a spin-polarized
current and, in particular, investigation of generation of such waves
via spin-torque effect represents a topical field of research.

The paper extends theoretical study of dipole—exchange spin waves
in a circular nanotube composed of a uniaxial easy-plane ferromagnet
started by the author in the previous paper [11]. The magnetic dipole—
dipole interaction, the exchange interaction, the magnetic anisotropy,
and the spin wave damping are considered. Unlike in the previous pa-
per, spin-polarized current is assumed to pass through the tube. Such
current is shown to change the spin wave characteristics and, in some
cases, can lead to generation of a spin wave.

As aresult, the dispersion law and the relation between the wave vector
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components for such waves are obtained and analysed. Effective dissipa-
tion, which can be either positive or negative depending on the direction
and the density of the current, is shown to take place in the investigated
nanosystem. The spin wave generation conditions are obtained.

2. THEORY
2.1. Problem Statement. Model Description

Let us consider a two-layer ferromagnetic nanotube with a circular
cross-section and a spin-polarized current passing through it in the ra-
dial direction. We assume that one layer of the nanotube is ‘fixed’ in
the sense of the magnetization direction, the second—‘free’, so the
current passing through the ‘free’ layer (in the radial direction) be-
comes spin-polarized. Let us denote internal radius of the ‘free’ layer
as a, and the external one as b and direct the Oz axis of the coordinate
system along the symmetry axis of the tube (Fig. 1). The medium out-
side the tube is assumed non-magnetic.

Let us assume that the ‘free’ layer is composed of a uniaxial easy-
plane ferromagnet with its anisotropy axis directed along the axis of
symmetry of the nanotube (the vector n in Fig. 1), and the Oz axis of
the co-ordinate system is also co-directed with n. The ferromagnet pa-
rameters are denoted as follows: the exchange constant o, the uniaxial
anisotropy parameter <0 (is considered constant), the gyromagnetic
ratio y (is considered constant). Let us consider the spin wave dissipa-
tion non-negligible and introduce the Gilbert damping constant of the

N -
\
| 3
A
A
Fj———— .
M

‘free’ layer

‘fixed’ layer

Fig. 1. Configuration of the investigated nanosystem.
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ferromagnet ag. The ground state magnetization M, of the both layers
are assumed to be directed radially (see Fig.1) and have constant
length in the entire volume of the ‘free’ layer. All components (in the
cylindrical coordinate system) of the external magnetic field H® are
assumed stationary and homogeneous.

Let us consider a spin wave propagating in the ‘free’ layer of the
above-described system along the axis Oz and take into account both
the magnetic dipole—dipole and exchange interactions (as they both are
essential for a nanoscale system) as well as the anisotropy, damping
and spin-torque effect in the Landau-Lifshitz equation. The wave is
assumed to be linear so the magnetization m and the magnetic field h
of the wave are small perturbations of the overall magnetization M and
the internal magnetic field (inside the ‘free’ layer) H?, corresponding-
ly: M=Mo+m, H?=H," + h, where H,?” is the ground state internal
magnetic field. Thus, the inequalities |m|<< |M|, || << |H,®| fulfil. The
task of the paper is to obtain the dispersion relation for such wave, re-
lation between the wave vector components and determine the condi-
tion of a spin wave generation in the ‘free’ layer.

2.2, Starting Relations

Let us introduce the cylindrical coordinate system (p, 0, z). For the
‘free’ layer, Mo= Moe,, M,=const, where e, is a unit vector for the co-
ordinate p. Then, a linearized Landau—Lifshitz equation for the con-
sidered nanotube in the absence of the spin-polarized current can be
written analogously to[11] as follows:

(&)

H
a—m:’y M,e x| h+oAm +Pme, ——>m + % _om ) (1)
ot : M, YM, ot

where e, is a unit vector for the coordinate z.

In order to take into account, the spin-polarized current, let us use
the Slonczewski—Berger spin-transfer term analogously to the previ-
ous papers of the author [12, 13]. Namely, we assume that the ‘free’
nanotube layer is thin enough to use the form of the term obtained for a
flat film [9]. This term in the linearized form after taking into account
M||e., m_Le, can be written for the investigated nanotube as follows:

eyhd
=—F— [M x[mxell, 2
where ¢ is the dimensionless spin-polarization efficiency, ¢/ is the elec-
tric current density (is considered constant) and e is the modulus of the
electron charge.
For the perturbations of the magnetization and magnetic field in a



86 V. V.KULISH

form of the travelling waves m =m(r)exp(int) =m.o(p,0)exp(iot —ik.),
h =ho(r)exp(iot) =h . op,0)exp(iot —ikj.) (where o is the spin wave fre-
quency and kj is the longitudinal wave number), Eq. (1) with the spin-
transfer term (2) can be rewritten as follows:

iom __vehdm, _ Y(Moep X (ho +0Am, + pmge, + (z(o;x(} - H(()i)] Mo J]

" 2eM,(b-a) M

0
(3)
Analogously to the previous paper [11], let us note that this Lan-
dau-Lifshitz equation combined with the Maxwell equation
divh =—-4ndivm forms a system of equations in which the magnetiza-
tion perturbation vector can be eliminated. Let us use the magnetostat-
ic approximation (that can be applied for typical spin waves; see, e.g.,
[14]) and introduce the magnetic potential ®(r,t)=do(r)exp(int)=
=®,¢(p,0)exp(iot —ik,); so, for the magnetic field, the relations
h=VO®, ho=V®d, fulfil. Then, after the above-mentioned elimination of
the magnetization perturbation, one can obtain the following equation
for the magnetic potential:

iyehd
® %M (b - a) HY HY
o —laa -0 2% | gp - 2o % yp | A0, -
Y M, M, YM, M, M,
iyehd
HY ioog |10 ( o0 [OHZeJWy (b—a)]mﬁ oD
—An| oA - 2+ —C ——(p °j+ 0 0+
M, M, )pop\  Jp YMop oo
O
+Bk’ an - o | 100 @, =0.
M, M,

(4)

Let us note that as the investigated nanotube is considered thin

((b—a)/a<<1), for the internal magnetic field the relation for a flat

film fulfils approximately: Ho” ~ H® — 4nM,. In particular, if the ex-

ternal magnetic field is directed along the tube axis analogously to the

previous papers by the author [12, 15], which consider nanotubes made
of an easy-axis ferromagnet, one can obtain

HY ~ \/(H“’ )+ (4nb1, )

The spin-polarized current does not change the magnetic field as it is
directed radially.
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3.RESULTS AND DISCUSSION
3.1. Dispersion Relation

Unlike the case of nanotubes composed of an easy-axis ferromagnet (in-
cluding previous papers of the author [12, 15]), for the case of an easy-
plane ferromagnet, it is not possible (in general case) to seek a solution
of Eq. (4) in the form of a linear combination of cylindrical functions be-
cause of the presence of two derivatives 0®,/00, (1/p)0/0p(pode/0p).
However, it becomes possible if angular oscillations are absent. There-
fore, let us consider the particular case of longitudinal-radial waves for
which, in particular, the relation 0®,/00 = 0 fulfils.
In such case, a solution of Eq. (4) can be sought as follows:

®, = (AT, (k.p) + AN, (k,p)) exp(-ikz2) ; (3)

Here, A; and A, are constants, J, and N, are the Bessel and Neumann
functions of order n, correspondingly, k&, is the transverse wave num-
ber. In the considered case, n is the transverse-angular oscillatory
mode number, which can only be equal to 0 (zero transverse-angular
mode). After substituting the solution (5) into Eq. (4), one can obtain
the following dispersion relation:

o 1 (i[K(1+aé)+%(2K2+Rz)]i

YM, - 1+0c(2} YM,

5 (1 aé)[Kz (K*+R*)+ K1+ ai)} _[K(1+ o) s RZ)JZ |

Y2M§ 2yM,
(6)
where
(i) )2 2
K® = ok + 20~ it + \/(H ] +16n°, R® = (4n +|[3|)]i‘2,
M, M, E 7
B yehd
2eM,(b—a)’

and k =, /kf + k7 is the total wavenumber.

After taking into account the fact that spin waves can only be excited,
when the damping parameter is small (o has the order of magnitude 0.1
or less), this dispersion relation can be simplified as follows (the root
with the positive real part):
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2 2
©~ YM,|i| ——+ag g2+ 2|y Kz(K2+R2)—% K* +—1|.
YM, 2 YM, 2

(8)
Eq. (8) represents the sought dependence of the spin wave frequency on
the wave vector components.

3.2. Relation between the Wave Vector Components

Let us note that the above-obtained dispersion law (8) contains depend-
ence on two components of the wave vector (transverse and longitudi-
nal). Then, for more complete specification of the spin-wave pattern,
this law must be supplemented by either a spectrum of values of at
least one of these components or a relation between them.

Analogously to the previous paper [11], let us use standard bounda-
ry conditions for the magnetic field b1,=bs,, hic=hs (here, b is the
wave magnetic induction vector, medium 1 is the investigated ferromag-
net, 2 is the external medium, n means the normal, and 7 is the tangential
to the interface components of the vector). In the process of applying
these boundary conditions on both interfaces of the ‘free’ layer, and,
thus, bounding the magnetic potential inside and outside the ‘free’ layer,
one can notice that the situation is physically different from the one in-
vestigated in the previous paper. Namely, while in [11] the external me-
dium (outside the tube) was assumed to be non-magnetic, in the current
research outside material that corresponds to the ‘fixed’ layer is ferro-
magnetic (the inner medium, however, remains non-magnetic). Neverthe-
less, this fact does not change corresponding mathematical transfor-
mations because this layer is ‘fixed’ and does not sustain spin waves.

As a result, one can use expressions for the relation between the
wave vector components used in [11] for the spin waves investigated in
the current paper, namely, relations for the case of a thin tube
(b—a)/a << 1 asthe current research is limited to this case:

k[ 1'(ka)  K'(kp)
b\ I(ka)  K,(kb)

1{ 1 JM‘(’W)}[H@KO'(&@)}’

2k k, I,(ka) |\ 20 k, K,(kb)

tg(kL(b - a)) = 9)

where Iy, Ko are the modified Bessel and Neumann functions of order O,
correspondingly. Analogously to [11], this relation degenerates to a
quasi-one-dimensional spectrum for the transverse wavenumber

k, =ns/(b-a), (10)
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(where sis an integer, number of the transverse mode) on the most part
of the ranges of values of the components % and &.. (The component &
has the order of magnitude of the reciprocal nanotube length or more
and the component k2, has the order of magnitude of the reciprocal
nanotube thickness. Therefore, the relations kia>>1, k.b>>1, kj<<k.
fulfil on the most part of the ranges of values of the components & and
k.. For kia>>1, kb >>1 and either kj <<k, or k >> k., the relation be-
tween the wave vector components can be approximately written in a
quasi-one-dimensional form (10) [11]. The strongest deviation from
this simplified relation is observed when £ and &, have close values).

3.3. Discussion

Therefore, the sought dispersion relation for the investigated spin
waves can be written in the form (8) with the parameters (7) and
k2= Rj2+ k12. The longitudinal wave-vector component k& can be consid-
ered to change continuously while the orthogonal wave-vector compo-
nent &, is defined by the implicit relation (9). This relation can be re-
duced to the quasi-one-dimensional spectrum (10) for k£, nearly every-
where. Let us analyse the obtained results.

First, let us note that the relation between the wave vector compo-
nents—in either of the forms (9) or (10)—is similar to the analogous
relations obtained for a nanotube composed either of an easy-plane [11]
or an easy-axis (after limiting the mode number n to 0) [15] ferromag-
net in the absence of the spin-polarized current. Graphical representa-
tion of the relation (9) can be seen in Fig. 2.

Analogously to the previous paper [11], one can see from Fig. 3 that
the relation between the wave vector components, really, is close to the

7»/—— s=2
6.
Hé 5l
é 4-’/__ s=1
8
2,
1'/ s=0
0 1 2 3 4 5
k/k,

Fig. 2. Dependence of k, on kj/k, for the investigated composite nanotube
with the radii of the ‘free’ layer a =50 nm, b =60 nm.
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quasi-one-dimensional spectrum of values of the component k&, (10).
The strongest deviation from this simplified relation is observed when
k| and k, have close values, which corresponds to general considera-
tions. (Namely, mutual influence of the longitudinal spin waves and
the transverse spin excitations should be the strongest when their
wavenumbers have close values.)

Then, let us analyse the real part of the frequency. It becomes ap-
proximately equal to the non-dissipative expression in the absence of a
spin-polarized current obtained by the author in earlier paper [16]
when the condition

K| << K,y = vM, K* (K* + R’ )/{2% (K2 + }ZZH (11)

fulfils. The radical in the expression (8) vanishes and then becomes imag-
inary for the positive values of the parameter k when passes the first crit-
ical value x.1. Therefore, the entire spin wave vanishes: as the ‘effective
dissipation’ is positive for k>0, the spin wave cannot be excited for
K 2> Ker1 for the ‘—’ root of the frequency determined by the ‘+’ sign in (6).
The same applies for the ‘-’ root (because imaginary part of the frequen-
cy also remains positive). For the negative values of «, the radical in (8)
remains real everywhere. Let us check whether this vanishing of the spin
wave can be achieved for typical values of the nanosystem parameters.

Let us choose the following values for the ‘free’ layer ferromagnet:
B=-1,a=10"2cm2, y=10"Hz/Gs, M,=103Gs (typical values for fer-
romagnets used in synthesized recently nanosystems; see, e.g., [17,
18]). The Gilbert damping constant o for a typical ferromagnetic
nanosystem used in experiments with a spin-polarized current can be
chosen in the range of approximately 0.02-0.2; see, e.g., [19, 20].
Thickness of a typical nanotube varies from unities to tens of nm.
Then, for b—a=10nm in the absence of the external magnetic field
and transverse spin excitations, the first critical value k.1 has the or-
der of magnitude 10'2-10'® Hz depending on the value of og. Therefore,
the corresponding critical value of the current density . has the or-
der of 102°-10%2Fr/(s'cm?) (3-10'°-3-10'2 A/cm?). This value exceeds
essentially typical current densities in the corresponding experiments
(see, e.g., [10]). Thus, for typical values of the investigated nanosystem
parameters, the condition (11) fulfils, and the real part of the frequen-
cy is approximately equal to that for a non-dissipative system in the
absence of a spin-polarized current:

HY) HY K

~ 2 2 2 2 |
Reo ~ YM,KNK* + R —yMO\/(ock +—°J(ak +—°0+(4n+|3|)? .
(12)
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In particular, the above-described vanishing of the real part of the
frequency does not happen. Even for low values M,=10%Gs,
b—a=1nm and high values 0c=0.2, J =108 A/cm? difference between
the exact expression given by (8) and approximate expression (12) can
be considered negligible, albeit noticeable (see Fig. 3.).

Dependence of the real part of the spin-wave frequency given by the
simplified relation (12) on k—analogous to the one obtained in
[11}—for the above-mentioned typical values of the nanotube parame-
ters (specifically, b—a =10 nm) and with the spectrum of the trans-
verse wave-vector component in the form (10) is represented in Fig. 4.
As one can see, branches (that correspond to different orthogonal mode
number s) of the dependence are close to parabolic. Distance between
them increases with increase of the number s.

Now, let us analyse the imaginary part of the dispersion law (8):

i Hy | (4n PR
Imm=K+yMoocG(K2+?J=K+yM00cG{ak2+ ]\400 + PTE .(13)

Unlike the real part of the spin wave frequency, the imaginary part
in general case is affected essentially by the spin-polarized current.
The imaginary part contains a positive (damping) addend that de-
scribes the spin wave dissipation and an addend that describes the ef-
fects of the spin-polarized current; the latter can be positive or nega-
tive depending on the direction of the current. (Positive values of k
correspond to the current passing from the ‘fixed’ nanotube layer to

ho
o

Re @, 10" Hz
—
e -\ S -

o
Bl

1 2 3

k", 108 m!
Fig. 3. Dependence of Rew on kj for the investigated spin waves according to
exact (solid line) and approximate (dashed line) dispersion laws for zero
transverse mode (s =0). The following values of the ‘free’ layer parameters
are used: thickness b—a=1nm, external magnetic field H® =0 and the fer-
romagnet parameters o =10-12cm2, =-1,y=10"Gs/Hz, Mo=102Gs.
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6 //=2
/1
///:0

Re o, 10" Hz
-

Do

0 1 2 3

ks 10 m™
Fig. 4. Dependence of Rew on k| for the investigated spin waves with the fol-
lowing values of the ‘free’ layer parameters: thickness b —a =10 nm, external

magnetic field H® =0 and the ferromagnet parameters o =102 cm2, B=-1,
v=10"Gs/Hz, Mo =103 Gs.

the ‘free’ one, negative—vice versa.) As a result, imaginary part of the
frequency can be positive or negative (‘effective dissipation’}—and,
therefore, the excitation or damping process can dominate, so that the
spin wave can grow or attenuate in amplitude with time, correspond-
ingly. In the first case, generation of a spin wave takes place.

If the parameter k and, therefore, the current density J, are posi-
tive, the presence of the spin-polarized current increases the damping
(the sign of the spin-torque addend in (13) is the same as that of the
damping addend). For negative values of J, the sign of the damping
and spin-torque addends in (13) are opposite. Therefore, spin-torque
effect partially compensates the dissipation (‘effective dissipation’ is
weaker than the dissipation in the absence of the spin-polarized cur-
rent). When the parameter « reaches the second critical value,

HY 1 i
Koo = —YM,0 [akz + VOO + 5(411 + |B|)%J , (14)

the ‘effective dissipation’ vanishes. In this case, the spin wave does not
grow or attenuate with time: a self-sustained magnetization precession
occurs.

If the parameter k is less than k.2, the ‘effective dissipation’ be-
comes negative. Effectively, that means that the spin wave and, in par-
ticular, small spin-wave fluctuations, which occur spontaneously,
grow with time exponentially m « exp(wt) until the linear model limi-
tations are reached: generation of a spin wave takes place.

Critical value of the current density J.» that correspond to k.. for
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the above-mentioned typical values of the ‘free’ layer parameters
B=-1, a=10"?cm™?, y=10"Hz/Gs, My=103Gs, b—a=10nm, o=
=0.05) has the order of 10®Fr/(s.cm?) (3:10® A/cm?) for the zero
transverse mode s=0 (which is near the highest values of spin-
polarized spin current densities used in experiments and exceeds them)
and more for higher modes. On the other hand, for low enough values
of My and b —a and high enough value of ag, critical value of the cur-
rent density lies within the admissible range, at least, for the zero
transverse mode. E.g., for My=3-102Gs, b—a=3nm, oac=0.02 (with
the rest of the parameters remaining the same), J.2 for s=0 has the
order of 3:105A/cm? that is easily achievable. For the first (s=1) or
higher modes, J..2 exceeds current densities in the corresponding ex-
periments unless the exchange constant is small enough (e.g., for
a=2.5-10"2cm™2, the first mode s=1 can be excited, but not higher
ones). For My=10%2Gs, b—a=3nm, 0s=0.02, a.=2.5-10"2cm2 (with
rest of the parameters remaining the same), 5 modes (s=0-4) exist
within the admissible range of current densities.

Considering the fact that minimal value of the component & has the
order of magnitude of the reciprocal nanotube length and, therefore,
k™ <<k, (for s>0), a(k™")? << 1, for an experiment with the maximal
current density Jm.x generation condition for zero transverse mode can
be fulfilled, if

a.MZ2(b—a)(6m+|B|)e
Mo —a)(Br+[pe 15)
SthaX
and for the s-th mode (s > 0),
2 _ 2
200 My (0= @)y, o T8 | | <. (16)
ehd .. b-a

Dependence of the imaginary part of the spin-wave frequency given
by the relation (13) on k& and J for two sets of values of the nanotube
parameters (one of which is the same as used for Fig. 4 and other for
the values that allow the spin-wave generation) with the spectrum of
the transverse wave vector component in the form (10) is represented
in Fig. 5. As one can see, depending on values of the nanosystem pa-
rameters, spin-polarized current really can either contribute ‘effective
dissipation’ weakly (Fig. 5, a) or essentially, leading to spin-wave gen-
eration for some values of the current density (Fig. 5, ). Branches of
the dependence that correspond to different transverse modes (defined
by number s) display regularities analogical to those observed for the
dependence Rew(k)). Namely, they are close to parabolic (for fixed val-
ue of J), unlike for Rew, the dependence is close to linear, and distance
between them increases with increase of the number s.
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Fig. 5. Dependence of Im® on & and J for the investigated spin waves with the
following values of the ‘free’ layer parameters: H® =0, p=-1, y=10" Gs/Hz
and a) b—a=10nm, a=10"2cm2, Mo=103Gs, ac=0.05, b) b—a=3nm,
a=2.510"18cm2, Mo=3:10%2Gs, ac=0.02.

4. CONCLUSION

Thus, dissipative dipole—exchange spin waves in a circular two-layer
ferromagnetic nanotube with a spin-polarized current have been stud-
ied theoretically in the paper. One of the nanotube layers is considered
‘fixed’ in the sense of the magnetization orientation, the other (in
which the investigated spin waves travel)}—‘free’. The ‘free’ layer is
assumed composed of an easy-plane uniaxial ferromagnet with the
magnetic anisotropy axis directed along the tube axis. The spin-
polarized current passes through the ‘free’ layer in the direction or-
thogonal to its surface. The magnetic dipole—dipole interaction, the
exchange interaction, the magnetic anisotropy, the spin wave dissipa-
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tion and (unlike in the previous paper) influence of the spin-polarized
current are taken into account.

For the above-described spin waves, an equation for the magnetic
potential has been obtained and (for the case of longitudinal-radial
waves) solved. As a result, the dispersion law for the investigated
waves has been found. This dispersion law has been complemented with
the relation between the wave-vector components, which has been
shown to degenerate into a quasi-one-dimensional values’ spectrum of
the orthogonal wave vector component nearly everywhere.

For the obtained spectral characteristics of the investigated spin
waves, graphical representations have been given and numerical eval-
uations have been per-formed. It has been shown that, in most cases,
influences of the spin-wave dissipation and spin-polarized current on
the real part of the dispersion law—dependence of the real part of the
frequency on the longitudinal wave-vector component—are negligible.
Branches of this dependence (that correspond to different orthogonal
modes) are shown to be close to parabolic; distance between them in-
creases with increase of the mode number.

For the imaginary part of the frequency (that describes the spin-
waves dissipation), influence of the spin-polarized current can be es-
sential or negligible depending on the values of the nanosystem param-
eters. Branches of the dependence of the imaginary part of the fre-
quency on the longitudinal wave vector component and the current
density are also close to parabolic (for fixed value of the current densi-
ty)—but unlike the dependence for the real part of the frequency, the
dependence is close to linear—and distance between also them increas-
es with increase of the number s.

It has been shown that, in general case, presence of the spin-
polarized current can strengthen or weaken the spin-wave damping,
creating the ‘effective dissipation’. When the ‘effective dissipation’
becomes negative, the wave grows in amplitude with time, thus leading
to a spin wave generation. The condition of such a generation has been
found as well as limitations on the transverse-modes’ number, for
which the generation is possible. It has been shown that, for typical
values of the nanosystem parameters, only first several modes can be
excited via such a generation: in most cases, only zero mode or none.

The method proposed in the paper can be applied to nanotubes of
more complex configurations—for instance, with an elliptic cross-
section—as well as for more complex configurations of tube-type
nanosystems in general.
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