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The problem of the sign of the size correction to the surface energy per unite 

area of a single charged metal nanocluster within the liquid-drop model 
(LDM) is considered. Within the stabilized jelly model detailing the LDM, the 

effective radii of the electron cloud for Cs, Na, Mg and Al clusters are esti-
mated from the asymptotic behaviour of the electrical capacitance calculated 

by the Kohn–Sham method. The uncertainty of the cluster boundary associ-
ated with the atomic-scale roughness and nonsphericity of the surface, with 

taking into account the effective radius of the electron cloud of the cluster, 
can lead to an inversion of the sign of the size correction for surface tension. 
The distribution function of Cs clusters by charge and number of atoms in 

dense vapour on the saturation line is estimated. The fact that the surface 

energy of a metal depends on the dielectric constant ε  as weighted average 

over the area of contact with the external environment is discussed. A metal 
droplet on a dielectric substrate and a droplet in its own dense vapour are dis-
cussed as appropriate contacts. The dependence of surface tension on ε  for 

Cs, Na, Mg, Pb, Au and Al is calculated. Contact of a droplet with a dielectric 

substrate always leads to a decrease in surface energy. 

Key words: surface energy, metal nanocluster, electron-cloud radius, stabi-
lized jelly model. 

Розглянуто проблему знаку розмірної поправки до питомої поверхневої 
енергії відокремленого зарядженого металевого нанокластера в крапель-
ному моделі. У моделі стабільного желе, що деталізує краплинний модель, 
з асимптотичної поведінки електричної місткости, розрахованої методом 
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Кона–Шема, оцінено ефективні радіюси електронної хмари для кластерів 

Cs, Na, Mg й Al. Невизначеність межі кластера, яка пов’язана з шерсткіс-
тю атомарного масштабу та несферичністю поверхні, а також ефективного 

радіюса електронної хмари кластера можуть приводити до інверсії знаку 

розмірної поправки поверхневого натягу. Оцінено функцію розподілу кла-
стерів Cs за зарядом і числом атомів у них у густих парах на лінії наситу. 
Обговорюється той факт, що поверхнева енергія металу залежить від сере-
дньозваженої по площі контакту із зовнішнім середовищем діелектричної 
константи ε . Як доречний контакт обговорюється металева крапелька на 

діелектричній підкладинці та крапля в густому власному парі. Розрахова-
но залежність поверхневого натягу від ε  для Cs, Na, Mg, Pb, Au й Al. Кон-
такт завжди приводить до зменшення поверхневої енергії. 

Ключові слова: поверхнева енергія, металевий нанокластер, радіюс елек-
тронної хмари, модель стабільного желе. 
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1. INTRODUCTION 

The role of surface effects in the processes of condensation, melting, 
evaporation and emission of charged particles increases with decreas-
ing cluster sizes. Moreover, the characteristics of these effects, such as 

the melting temperature, surface tension, electron and ion work func-
tions, the heat of atom evaporation, and the vacancy formation energy 

themselves begin to depend on the size of the clusters. 
 The free energy per unite area of the spherical surface between two 

phases can be represented in the asymptotic form as 

 1
0 02

1
( ) (1 )R O k

R R

γ  γ = γ ± + ≡ γ + δ 
 

, (1) 

where γ0 is the energy of flat surface, δ = γ1/γ0, and k = ± 1/R is a signed 

curvature. 
 The problem of the dependence of the surface tension of vapour bub-
bles and liquid droplets on the radius of curvature of the equimolecular 

surface is the subject of numerous theoretical and experimental stud-
ies for simple and polar liquids [1–8]. 
 The diversity of approaches and methods has not yet led to a unity of 

views even on the qualitative nature of such dependence. Experimental 
data for nucleation in simple liquids indicate that at temperatures 

close to critical, the surface tension of vapour bubbles is less than at a 

flat boundary [5]. 
 Within the framework of the Gibbs separating surface method, 
Tolman, Kirkwood and Buff [1, 2] formulated a visual definition of δ 

as twice the distance between positions of the Gibbs ‘tension’ surface 

and the equimolecular one, R. The Kirkwood–Buff statistical calcula-
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tion leads to a decrease in the surface tension of the drop (the ‘tension’ 

surface position for k = +1/R is closer to the condensed phase than to 

the vapour). However, numerical calculations for γ(R) within the 

framework of the van der Waals model for a bubble in a superheated 

liquid indicate the sensitivity of the magnitude and sign of the param-
eter δ to the choice of model and calculation method. 
 In [10], crystalline Ar clusters of ‘almost spherical’ shape were stud-
ied. In the nearest-neighbour approximation, the total surface energy 

and parameter δ were calculated for a spherical particle. Then atten-
tion is drawn to the fact that a ‘real’ close-packed cluster is not a 

sphere, but a polyhedron. In this case, it is proposed to take the radius 

of a spherical surface described around a polyhedron as an equimolecu-
lar surface. This radius is larger than the previous one by approximate-
ly the average distance between atoms, i.e., the renormalized quantity 

δ′ ≈ δ − 2r0 < 0 is introduced. In review [11], this technique is recom-
mended for calculating the specific surface energy of solid clusters. 
 Relatively little attention has been paid to the size dependence of the 

surface tension γ(R) of metal droplets, which is apparently due, firstly, 
to the complexity of a consistent description of the surface of a liquid 

metal plasma, and, secondly, to the lack of reliable experimental data. 
From an analysis of the evaporation rate of microdroplets deposited on 

a carbon substrate, the value of δ ≅ −11.4 and −10.4a0 (a0 is the Bohr 

radius) was estimated for Pb and Au, respectively [12, 13]. In [14], the 

size dependence of the wetting angle of Pb nanodroplets on a carbon 

substrate was measured, which leads to the value δ ≅ −2.5a0. These re-
sults confirm the conclusions of thermodynamics [3, 7] about the pres-
ence of a negative size correction to the surface tension of a flat surface, 
thereby indicating the existence of a general nature of the dependence 

for microscopic droplets of a simple liquid with short-range interaction 

forces between atoms, and for metal clusters (the Coulomb systems). 
 In one of the first works [15], using the Kohn–Sham method in the 

model of ordinary jelly at zero temperature, a noticeable size depend-
ence of surface energy σ(R) of solid Na clusters was not detected at all. 

Then, in [16], using the same model and the Ritz method, the value δ 

for alkali metal clusters (δ > 0) was calculated for the first time. In 

[17], the quantity was ‘extracted’ from the vacancy formation energy 

 vac 2 vac vac
0 0 04 (1 ), 1 /r k k rε = π σ + δ = − . (2) 

Using these magnitudes of δ, it turned out to be possible to obtain good 

values for the atomic cohesion energy 

 coh 2 coh coh
0 0 04 (1 ), 1 /r k k rε = π σ + δ = + . (3) 

 In Ref. [18], these results were tested in two ways: by the numerical 
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solution of the Euler–Lagrange equation in the gradient expansion of 

the electron density functional and using the Kohn–Sham method. As 

a result, δ = 1.76 and 2.76a0 were found for Na and Cs, respectively. 
The authors of [18, 19] concluded that δ > 0 for all metal clusters. 
 In the two-component model of a liquid metal plasma [20, 21], the 

Fisher–Wortis formula for δ [4] was generalized to the case of the Cou-
lomb liquids and obtained for an ideally smooth convex spherical sur-
face. 
 For σ(R) at low temperatures, using the semi-empirical Frenkel–
Langmuir rule, it was found that δ/r0 ≅ 1/2 for metals and inert gases 

[21]. It follows that the surface area of the radius r0 is well described 

the experimental data in LDM, however, the radius of a many-atomic 

cluster apparently needs to be renormalized. 
 Modern data on the melting of small metal clusters [22–24] confirm 

and complement the analytical results of Pavlov [25]: as the cluster 

size decreases, firstly, the melting temperature decreases, and second-
ly, only at cluster radii R ≤ 1 nm (at which already quantum size effects 

are significant) the size dependence of the melting temperature be-
comes noticeable. As noted in [22], the process of melting a cluster con-
sisting of hundreds of atoms, firstly, corresponds to an uncertainty in 

the melting temperature—a pre-melting stage, extended in tempera-
ture by 10–15 K, which creates uncertainty in the atomic density and 

cluster size; secondly, the diffusion of surface vacancies into the bulk 

is more favourable for clusters with unfilled electron shells than for 

magic clusters. These key observations indicate the complexity of the 

problem, the complex physics, and are useful for a comprehensive 

analysis of the semi-classical size dependence of surface energy. The 

value R = 1 nm corresponds to the numbers of atoms in cluster N ≅ 38, 
106, 181 and 254 for Cs, Na, Mg and Al, respectively. 
 As follows from the above, microscopic calculations for droplets of 

metals and simple liquids, as well as semi-empirical estimates, give op-
posite size dependences γ(R) and σ(R), which makes its study relevant 

in the future. 

2. BASIS OF CONSIDERATION 

The total energy of a droplet, with ideal sphericity of its surface (i.e., 

‘point-likeness’ of atoms), is represented as the sum of the energy of 

the volume and surface: 

 bulk surf bulk 3 surf 2, ,E E E E R E R= + ∝ ∝ . (4) 

In fact, (4) is an expansion of the total energy in powers of R−1, imply-
ing a well-defined quantity R. However, the atomic-scale surface 

roughness does not allow one to determine accurately the cluster 
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boundary. Therefore, for example, the scattering of conduction elec-
trons on the surface of nanoclusters is predominantly diffuse, which is 

important when calculating the optical characteristics of mono- and 

bimetallic nanospheres [26]. 
 The value E of a cluster consisting of N atoms can be calculated in 

any model and then represented as an expansion in powers of N−1/3, not 

R−1. For example, within the framework of ab initio calculations, a 

many-particle potential is first formed, and then, by sorting through 

atomic configurations, the total force from all atoms on a selected at-
om is equal to zero, etc. As a result, the equilibrium shape of the clus-
ter in vacuum, temperature T = 0 and distances between atoms corre-
spond to zero pressure [20, 21, 27–30], which can be considered as a 

mechanical analogue of thermodynamics (criticism of the thermody-
namic approach for clusters in a rarefied atmosphere was given in 

[13]). The resulting cluster shape is never spherical. 
 In fact, the cluster can be conditionally represented as a sphere (see 

Fig. 1 in [10]) only for such numbers as Nn = 13, 55, 147, 309, …, which 

correspond to numbers n = 1, 2, 3, 4, … of coordination spheres of at-
oms. Only clusters with such Nn are polyhedra, close-packed atoms 

(balls of radius r0) Representing the total number of atoms in a cluster 

as a sum 
bulk surf

n n nN N N= + , we can introduce the corresponding radii 
in the form 

 0( )r n= + ξR . (5) 

The coefficient ξ = 0 corresponds to the surface passing through the 

centres of the corner atoms of the polyhedron, and ξ = 0.66 and 2−1/2
 

corresponds to the equimolecular surface of the icosahedron and cub-
octahedron, respectively [10]. 
 In Gibbs theory, the total surface energy of a cluster does not depend 

on the choice of the radius of the dividing surface: 

 surf ( ) ( ) ( ) ( )E R S R S= σ = σ R R . (6) 

Then 

 
2

0
0 0 2

2( )
( ) 1 1

( )

rS R
O

S

 δ −δ δ  σ = σ + = σ + +     
     

R
R R R R

, (7) 

which, taking into account (5), leads to the expression 

 
2

0 0

( ) 2 1
1 ,O

n rn

σ δ − ξ δ = + + δ ≡ σ  





R
, (8) 

provided that the second term in r.h.s of (8) is much less than 1. 
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3. CALCULATION RESULTS AND DISCUSSION 

In LDM, which has proven itself well in nuclear physics and the physics 

of metal clusters [31–36], a unique correspondence is established be-
tween the radius of the cluster (ion core) and N 

 1/3
0R N r= . (9) 

 In classical electrostatics, the capacitance of a conducting sphere is 

determined by its radius R. In LDM, the boundary of a positively 

charged (ionic) core is always determined by the coordinate r = R. How-
ever, the electron liquid spill-out beyond this boundary. Renormaliza-
tion of the surface area can be carried out taking into account the ef-
fective radius of the electron cloud [34], which determines the electri-
cal capacitance. 
 In Refs. [36, 37], we studied the energy characteristics of charged 

solid metal clusters and clusters containing a single vacancy in the sta-
bilized jelly model detailing the LDM for N ≤ 270, using the Kohn–
Sham method taking into account the quantization of the electron 

spectrum. Let us use these results. 
 All energy characteristics, in particular, the ionization potential of 

the cluster IPN and the energy of electron affinity EAN, have a strong 

oscillatory dependence due to the spherical electron shell structure. 
According to Koopmans’ theorem 

 
2 2

HO LU( ) ( )
,

2 2N N N N
N N

e e
IP EA+ −

+ −
= −ε + = −ε +

 

, (10) 

where 
HO
Nε , 

LU
Nε  and N

±
  are the energies of the upper occupied and low-

er unoccupied orbitals, and electrical capacitances of positively and 

negatively charged clusters, respectively. 
 Independent calculation of self-consistent quantities IPN, EAN, 

HO
Nε  

and 
LU
Nε  allows one to calculate the capacitances of charged 

 
2 2

HO LU
( 1), ( 1)

2( ) 2( )
Z Z
N N

N N N N

e e
Z Z

IP EA
= = + = = −

+ ε + ε
  , (11) 

as well as neutral 

 
2

HO LU
( 0)Z

N
N N N N

e
Z

IP EA
= =

+ ε − − ε
  (12) 

clusters (e is elementary positive charge). For large spheres in the Har-
tree units ( 1e m= = = ) 

 0 ( )Z Z
N r n→ + ξ =



 R . (13) 
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In fact, this is the effective radius of the electron cloud. Next, from 

asymptotic behaviour of the cohesion energy (Fig. 8 in [36]) and elec-
trical capacitance (Fig. 6 in [36]) for the magic numbers of atoms, the 

values of δ  and 
Zξ


 were found (Table 1). 
 The value 

0ξ


, for example, for Na, exceeds by approximately 10% 

the similar value calculated in a different way in [34], and the values 
1 0 1− +ξ > ξ > ξ
  

 differ too by approximately 10% from each other. It 

should still be noted that the magic numbers of atoms in LDM [36], as a 

rule, do not coincide with n those in formula (13). 
 Let us recall that the value 

Zξ


 must refer to expression (8) for clus-
ters whose shape is close to spherical. In the future, for estimates with 

arbitrary N, we will use a hybrid approach and the formula 

 
1/3 2/3

0

2( ) 1
1

ZZ

O
N N

δ − ξσ  = + +  σ  





R
 (14) 

(on the issue of redefining the cluster radius, see also Ref. [38]). 
 Effects associated with the curvature of the surface of atomic clus-
ters and the temperature dependence of surface properties can deter-
mine the energetically favourable formation of cluster components in 

plasma and their ability to accumulate an electric charge. 
 It is possible to estimate the distribution function of Cs clusters by 

charge and number of atoms in them in dense vapour on the saturation 

line using LDM in a similar way to how we did it earlier when calculat-
ing the ionization equilibrium in plasma (see details in [39] and [40]). 
Caesium was chosen due to relatively low temperatures and the availa-
bility of reliable data for calculations. The dependence of the density 

and pressure of caesium vapour on the temperature at the saturation 

line is well known (unknown, however, is the temperature behaviour of 

surface tension at temperatures above the melting point). 
 Therefore, having made a replacement σ → γ(T) in (14), we then used 

a decreasing linear temperature dependence γ0(T) from the melting 

point to the critical point, at which it is precisely known that γ0 = 0; 

from Table 1 the values δ  and 
Zξ


, were taken, calculated at T = 0 K (in 

the two-component model [20] near the melting point for alkali metals, 

TABLE 1. The results of calculations in LDM for T = 0 K. 

Metal r0/a0 δ  
Zξ


 

Z = −1 Z = 0 Z = +1 

Cs 5.63 0.26 0.40 0.36 0.33 

Na 3.99 0.32 0.42 0.32 0.32 

Mg 
Al 

3.39 
2.99 

0.54 
0.57 

0.37 
0.44 

0.54 
0.57 

0.46 
0.57 
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the calculated dependence δ(T) turned out to be weak). 
 In the theory of nucleation, it is believed that droplets containing 

more than a dozen particles are macroscopic. Such droplets are consid-
ered when describing heterogeneous nucleation in supersaturated va-
pour. For estimations on the saturation line, we used the expression: 

 
2

4
3

v

1 1
( ) exp ( , )

2
Z Z
N Z

T N

Z
n T N T

T

   ∝ − σ +  λ ε   

R , (15) 

where λT is the thermal wavelength of the atom in the vapour, ε(T) is 

the dielectric constant of the vapour [39, 40]. 
 In Figure 1, a for caesium, the normalized distributions of clusters 

by the number of atoms in them are shown. The applicability of LDM is 

determined mainly by the half-width of the cluster concentration dis-
tribution ( )Z

Nn T  (Fig. 1, a) and values N*(T) (Fig. 1, b). For N = N*(T) 

the functions ( )Z
Nn T  have maxima in Fig. 1, a. With increasing tem-

perature, the maxima 
1( )Nn T+

 shift towards higher N. The half-width 

of the distribution is quite large, so in the problem when averaging 

with a function ( )Z
Nn T , the main contribution will come from large 

clusters. For comparison, Fig. 1, b shows the result of the calculation 

for which the size dependence of the surface energy in (14) is complete-
ly absent. The negative sign of the correction in (14) indicates favour-
able formation of heavier clusters in the metal–vapour–plasma, and 

Fig. 1, b demonstrates the sensitivity of the LDM applicability to the 

description of critical phenomena. 

  
a b 

Fig. 1. Calculated dependences ( )Z
Nn T  and N*(T) on the saturation line for Cs 

vapour. The dash-dotted curve indicates the dependence N*(T) calculated un-
der the assumption σZ(N)/σ0 = 1 in (14). 
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 In conclusion, let us pay attention to the possible refinement of exper-
imental data on the surface tension of liquid metal nanodroplets obtained 

by measuring the size dependence of the Young contact angle [12, 14]. 
 It is known that in the statistical description of a metal drop, the 

pressure tensor, including T = 0 K, contains the Maxwell stress tensor, 
which depends on the dielectric constant of the environment [20, 41, 
42]. Recent works [41–43] have developed an approach to the problem 

of a metal surface with a non-uniform dielectric coating. Attention is 

drawn to the fact that the work function of the metal depends on the 

dielectric constant ε  weighted average over the contact area. 
 If a metal droplet of area S is in the vapour phase with a constant εv, 

but touches a dielectric substrate with a constant ε (contact area αS, 

α < 1), then the effective influence of the substrate and vapour, as fol-
lows from the Gauss theorem [43], is reduced to calculating the work 

function of the droplet in a homogeneous fictitious dielectric medium 

with constant 

 v(1 )ε = αε + − α ε . (16) 

 A comparison of the results of fully self-consistent calculations in 

[44, 45] and partially self-consistent calculations in [41, 42] indicates 

that the results obtained for the surface energy in [41, 42] can be taken 

approximately as an ‘upper’ estimate. The calculation involves inte-
gration over the entire space, taking into account the complex behav-
iour of electron density and potential profiles, which the Ritz method 

is not capable of reproducing. 
 Taking into account the dielectric coating leads to a decrease in sur-
face energy compared to a drop in a vacuum. For a drop suspended in a 

vapour, α = 0, and the vapour constant εv can be estimated using the 

Clausius–Mossotti formula. Therefore, the surface tension of a droplet 

in a vacuum, a droplet on a dielectric substrate, and a droplet in dense 

vapour are different from each for σ0. 
 Using the calculation scheme of the Ritz method and the trial func-
tion [41, 42], the values 0 ( )σ ε  for Cs, Na, Mg, Pb, Au and Al were cal-
culated (see Table 2). 
 Example: a drop of Pb on a substrate of amorphous carbon, for 

which ε = 10, and εv = 1 for vapour. Let the fraction of the surface 

touching the substrate is α = 1/10. What is its surface energy now? Us-
ing (16), we obtain 

 
1 1

10 1 1 1.9
10 10

 ε = + − = 
 

 ,  

and, based on Table 2, we are guessing that σ0 ≈ 614 erg/cm2. Compared 

to 1ε =  the decrease in surface energy was 14%. Apparently, such a 

significant decrease is weakly dependent on the capillary effect. 
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 Let us recall that such an estimate gives a somewhat overestimated 

effect of the dielectric coating. 
 Now consider a drop of Cs suspended in dense vapour (α = 0) on the 

saturation line at T = 1400 K, when the vapour can still be considered 

as an ideal gas. Then, formula (16) gives vε = ε , and the Clausius–
Mossotti formula gives εv = 1.064. Moreover, although the exact sur-
face tension at such a temperature is unknown, calculations at T = 0 

and such a value of ε  indicate an insignificant effect for this tempera-
ture. 

4. CONCLUSIONS 

In this work, the effective radii of the electron cloud for Cs, Na, Mg 

and Al were calculated using the stabilized jelly model from the asymp-
totic behaviour of the electric capacitance. The calculation results were 

used to analyse the size dependence of the surface tension of charged 

metal clusters. To comply with thermodynamic theory, in which atoms 

are points, it is obvious to refine the surface area of the cluster taking 

into account the finite sizes of atoms (their non-pointiness). The un-
certainty of the boundary associated with the roughness of the atomic 

scale, as well as taking into account the effective radius of the electron 

cloud of the cluster, can lead to an inversion of the sign of the correc-
tion. 
 Contradictions arise not only when choosing a calculation method, 

but also in determining the area of the real surface and its local curva-
ture, which may indicate that the accuracy of the model is exceeded in 

the absence of reliable experimental data. Therefore, in asymptotic, 
representing the total cluster energy in the form of an expansion in 

powers of N−1/3, and not R−1
 at least reduces the overall modelling error. 

 The influence of the environment on the surface energy of the drop-
let is estimated. Particular attention is paid to the influence of the die-
lectric substrate: the surface energy of the metal depends on the dielec-
tric constant weighted average over the area of contact with the exter-

TABLE 2. The results of calculations 0 ( )σ ε  (in erg/cm2) for α = 1. 

ε  1 2 3 4 5 10 

Cs (1) 66/79 63 62 62 62 61 

Na (1) 178/191 167 163 161 159 157 

Mg (2) 
Pb (4) 
Au (3) 
Al (3) 

520/569 
714/465 
858/1134 
872/1160 

460 
603 
690 
698 

436 
560 
625 
630 

424 
537 
590 
593 

417 
523 
568 
570 

401 
493 
523 
522 
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nal environment. Calculations were performed for Cs, Na, Mg, Pb, Au 

and Al. Contact of a drop with a dielectric substrate can lead to a sig-
nificant decrease in surface energy. 
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