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The limits of change in stress/strain invariants in the phases of polycrystal-
line materials with cubic lattices are investigated. The relationship between 

the local and macroscopic parameters is established on the basis of the follow-
ing principles: averaged connections, orthogonality of fluctuations of the 

stress and strain tensors, extremum of discrepancy between the macroscopic 

measures and suitable average values of microscopic analogues. General ex-
pressions for extreme values of stress/strain deviator invariants for the pol-
ycrystal phases are obtained. The non-monotonic nature of changes in the 

extreme values of the invariants of stress/strain deviators and volumetric 

stresses/strains depending on the phase concentration is revealed. In case of 

a two-phase polycrystal, as the harder phase increases, the invariants first 

increase, reaching their maximum value at a concentration of less than 5%, 
and then, monotonically decrease. Volumetric macrostress has a nonlinear 

effect on the patterns of changes in volumetric stresses in the grains of a pol-
ycrystalline material. 

Key words: stress, strain, invariants, averaged connections, orthogonality, 
anisotropy. 

Досліджуються межі зміни інваріянтів напруження/деформації у фазах 

полікристалічних матеріялів з кубічними ґратницями. Взаємозв’язок 

між локальними та макроскопічними параметрами встановлюється на 

основі принципів: середніх зв’язків, ортогональности флюктуацій тензо-
рів напружень і деформацій, екстремуму невідповідности макроскопіч-
них величин з відповідними середніми значеннями мікроскопічних ана-
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логів. Одержано загальні вирази для екстремальних значень інваріянтів 

девіяторів напруження/деформації у полікристалічних фазах. Показано, 
що за фактора анізотропії, більшого за одиницю, максимальні значення 

інваріянтів девіяторів напруження виникають у зернах, кристалографіч-
ні осі яких співвісні з макросистемою, в якій діягональні компоненти де-
віятора дорівнюють нулю, а мінімальні — у зернах, кристалографічні осі 
яких співвісні з главами. Встановлено немонотонний характер змін екст-
ремальних значень інваріянтів девіяторів напружень/деформацій та 

об’ємних напружень/деформацій від концентрації фаз. Для двофазного 

полікристалу зі зростанням вмісту більш твердої фази інваріянти спочат-
ку збільшуються, досягаючи найбільшого значення за концентрації, ме-
ншої за 5%, а потім монотонно зменшуються. Об’ємне макронапруження 

нелінійно впливає на закономірності змін об’ємних напружень у зернах 

полікристалічного матеріялу. 

Ключові слова: напруження, деформація, інваріянти, усереднені зв’язки, 
ортогональність, анізотропія. 
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1. INTRODUCTION 

The construction of constitutive equations relating macrostresses tij 

and macrostrains dij based on the known constitutive equations at the 

level of structural elements, ij ijt d= 

  is one of the main problems in the 

mechanics of a deformed solid. There are three main approaches: sta-
tistical [1–8], self-consistent [9–16] and direct [3, 10, 17]. Static mod-
els include models that consider elements of the lowest scale level with 

a sufficient degree of independence from each other; the transition to a 

higher scale for some characteristics is carried out by averaging, for 

the other part, on the basis of accepted kinematic (Voigt hypothesis), 
static (Reuss hypothesis) or intermediate type (Kroener-type hypothe-
ses). Self-consistent models are based on considering a mesolevel ele-
ment surrounded by a material matrix with effective characteristics, 
determined iteratively from the properties of mesolevel elements using 

the adopted procedure for averaging the latter. Direct models consider 

the solution of a boundary value problem for a set of crystals with a 

priori given physical equations, which are unknown for irreversible 

processes. Numerical implementation in direct methods is usually 

based on the finite element method. 
 Currently, when studying reversible processes, two-level models are 

most widespread, in which the relationship between the local and mac-
roscopic parameters is based on linear relationships between stress and 

strain fluctuations 

 0ij ij ijd = ε + ε δ

  ,  
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where only the D and B parameters depend on the model. Based on var-
iational methods [9, 10, 18], it was found that the limiting options 

Bijnm = ∞ (homogeneous strain state ij ijd d= ) and Bijnm = 0 (homogeneous 

stress state ij ijt t= ) correspond to the upper and lower limits of the ef-
fective elastic constants for composite materials of arbitrary struc-
ture. Because of this, intermediate options 0 < Bijnm < ∞ have become 

widespread. 
 It was shown in [4] that linear relationships between fluctuations of 

stress and strain do not agree with the first law of thermodynamics and 

give overestimated internal stresses in the irreversible region of de-
formation. In particular, the inequality was established 

 ij ij pq pqt d dt t d dt<∫ ∫ 

 

    

for any options for changing isotropic tensor Bijnm, with the exception 

of limiting values: Bijnm = 0, Bijnm = ∞. 
 Nonlinear equations for the connection between local and macroscop-
ic parameters are based on three principles formulated in [4, 5, 19]: av-
eraged connections, orthogonality of fluctuations of stress and strain 

tensors, the extremum of the discrepancy between the macroscopic 

measure and a suitable average value of the microscopic analogue. 
 In Refs. [4–7, 19, 20], nonlinear coupling equations were used to de-
scribe deformation processes in single-phase polycrystalline materials. 
In this article, we will analyse the patterns of changes in the limiting 

values of stress and strain invariants in multiphase polycrystals with 

cubic lattices. 

2. GENERAL PROVISIONS OF THE CONSTITUTIVE MODEL 

Based on the equilibrium equations of continuous medium and geomet-
ric Cauchy relations, the following expressions have been established 

[13, 14]: 

 
00

1
,  ,  ,ij ij ij ij ij ij ij pq pq

V

t t t dV d d t d t d
V ∆

= = = =
∆ ∫  

    (1) 

where ijt , ijd  are the stress and strain tensors at each point of the re-
gion ∆V0, respectively, and < > is the sign of averaging over the volume 

∆V0. When deriving (1), it is assumed that the boundary conditions 

0/i S i ij ju u d x= = , dij = const, 
0

( )
/
n

i S ij jp t n= , tij = const are satisfied on the 

surface S0. 
 Three equations (1) can be represented as one relation 

 ( )( ) 0ij ij ij ijt t d d− − =

 . (2) 
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 From Eq. (2), it follows that the average value of the scalar product 

of fluctuations of the stress and strain tensors in the representative 

volume is cancelled. In Refs. [13–15], it was assumed that relation (2) 
is satisfied for each material particle. This position is formulated in 

the form of a postulate about the orthogonality of fluctuations of 

stress and strain tensors in each element of the structure: 

 ( )( ) 0ij ij ij ijt t d d− − =

 . (3) 

 Having expanded the stress and strain tensors into deviatoric and 

spherical components in (3), we obtain 

 0 0 0 0, , ,ij ij ij ij ij ij ij ij ij ij ij ijt d t d= σ + σ δ = ε + ε δ = σ + σ δ = ε + ε δ



   . (4) 

Let us establish one fundamental equation for the connection between 

macro and microstates 

 0 0 0 0( )( ) 3( )( )ij ij ij ijσ − σ ε − ε = σ − σ ε − ε   . (5) 

 We will establish an expression for fluctuations of stress and strain 

deviators based on the condition of equality of the mechanical work of 

the system of structural elements and the body element. It was shown 

in Ref. [5, 19] that this condition is satisfied by applying the simplest 

expression to fluctuations of deviatoric quantities 

 ( )ij ij ij ijBσ − σ = ε − ε , (6) 

where B is an internal parameter, which contains information about 

the microscopic characteristics of material particles. In what follows, 
parameter B will be called the heterogeneity parameter. 
 In accordance with [5, 19], microscopic variables that have a certain 

physical meaning are divided into two categories: variable averaged 

values of which depend only on data on the surface of a representative 

volume and variable averaged values of which depend not only on data 

on the surface, but also on characteristics structures. In particular, in 

[5, 19], it is shown that natural macroscopic measures of the energy of 

change in volume and shape do not coincide with the corresponding av-
eraged micromeasures. It is natural to assume that variables contain-
ing information about the characteristics of the microstructure of a 

material have certain fundamental properties. In [5, 19], a principle 

was proposed according to which in real interactions the discrepancy 

between a macroscopic measure and a suitable average value of a mi-
croscopic analogue takes on an extreme value. In particular, 

 Extremumij ij ij ij∆ = σ ε − σ ε =   . (7) 
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 Expressions (1), (5)–(7) represent a closed system of equations for the 

relationship between macro- and microstates. They do not contain refer-
ences to the properties of the material; therefore, they are valid for de-
scribing both reversible and irreversible deformation processes. On 

their basis, it is possible to construct constitutive equations at the mac-
roscopic level if the constitutive equations at the microscopic level are 

known. 

3. DETERMINATION OF MACROSCOPIC ELASTIC CONSTANTS 

OF MULTIPHASE POLYCRYSTALLINE MATERIALS AND 

HETEROGENEITY PARAMETER 

Based on (1), (6) and (7), we analyse the influence of the elastic charac-
teristics of the phases and their volumetric content on the macroscopic 

elasticity constants and the heterogeneity parameter. When analysing 

the behaviour of crystals with a cubic lattice, we will use three inde-
pendent elastic parameters that have a clear physical meaning: C44 is 

shear constant (relates shear stress to shear strain), A is anisotropy 

factor, K is volumetric deformation modulus. 
 The physical equations of crystals, in the crystallographic co-
ordinate system ix′ , have the form 442ij ijC A′ ′σ = ε  if i = j and 

442ij ijC′ ′σ = ε  if i ≠ j, σ0 = 3Kε0. Taking into account these expressions in 

(6), we establish the following relations between local and macroscopic 

deformations: 

1 1
11

44 44

( 2 )( 2 )
,  ,  ,  cos( , )

2 2
in jm nmn m nm

ij ij i j

B G r rB G r r
i j r x x

B C A B C

+ ε+ ε′ ′ ′ε = ε = ≠ =
+ +

 

 

  .(8) 

Here, εij is the macroscopic deviator of the deformation tensor in the 

global co-ordinate system xi, which coincides with the main system. 
Let us further agree to denote the elasticity constants of crystals, 
stress and strain in phase with weight fk through: 

44, , ,, , , ,k k k k ij k ij kC C A K= σ ε . Then, macroscopic stresses σij and strains εij 

can be expressed through the averaged values of stresses ,ij kσ  and 

strains ,ij kε  in the phases of the polycrystal: 

 , .
1 1 1

, , 1
n n n

ij ij k k ij ij k k k
k k k

f f f
= = =

σ = σ ε = ε =∑ ∑ ∑ . (9) 

 Expression (6) for each phase can be represented as 

 , ,( )ij k ij ij ij kBσ − σ = ε − ε . (10) 

 Writing (8) in the global co-ordinate system and taking into account 

expressions (9), (10), after integration over the orientation factor of 

the crystal lattice, we obtain 
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1 44

25 3

2 2 2

n
k

k
k k k

A
f

G B C B C A B=

 
= + + + + 

∑ . (11) 

 The expression for the extremum of the discrepancy between 

measures ∆ (7) can be represented as 

 , ,
1

Extremum
n

ij k ij k k ij ij
k

f
=

∆ = σ ε − σ ε =∑  . (12) 

 Taking into account relations (1) and (10) in (12), we obtain 

 , ,
1

( )( ) Extremum
n

ij k ij ij k ij k
k

B f
=

′ ′ ′ ′− ε − ε ε − ε =∑   . (13) 

 Substituting into (13), expressions (8) for each phase and taking in-
to account that , , , , ,ij k ij k ij k ij k ij ij ij ij

′ ′ ′ ′ε ε = ε ε ε ε = ε ε     are invariant quantities, 
after integrating over the crystal lattice orientation factor, we find: 

 
2 2

1

( 2 ) 2
2 3 5 Extremum

10 2 2

n
nm nm k

k
k k k k

B B G A B G
f

G C A B C B=

    σ ε + + − + − =   + +     
∑ . (14) 

 Based on system (11), (14), it is possible to establish patterns of 

change in the shear modulus G and inhomogeneity parameter B in mul-
tiphase materials. 
 The patterns of changes in parameters G and B scales X⋅10−4

 MPa 

depending on the volumetric content of the harder phase f (f2 = f, f1 = f) 

 

Fig. 1. The influence of volumetric content of harder phase on the alloy shear 

modulus. 
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were studied using examples of three two-phase materials: Al–Fe, Al–
W, Al–Cu, having the following elastic characteristics [21]: 

 3
2 , 2 3 , 3( ,k) / , / ( , )k k kM f I I I I N f k Aσ σ σ σσ ≤ ≤ σ  ,  

 1 2 1 2Fe( 2.417,  11.6 ),W( 0.99,  15.14 )A C c A C c= = = = ,  

 4
2 2Cu( 3.209,  7.54 ), 10 MPaA C c c= = = .  

 The results of numerical studies for the shear modulus are presented 

in Fig. 1. The curve marked in red corresponds to Al–Fe alloy, in lilac 

corresponds to Al–W alloy, and in brown corresponds to Al–Cu alloy. 
According to Fig. 1, macroscopic shear modulus G = G(f) increases 

monotonically with increasing f. 
 Diagrams for the parameter B = B(f) presented in Fig. 2 have a more 

complex appearance compared to the diagram G = G(f). For all studied 

materials, a nonmonotonic dependence of the heterogeneity parameter 

on f. 

4. ANALYSIS OF LIMITING VALUES OF STRESS/STRAIN 

INVARIANTS IN POLYCRYSTALLINE PHASES 

The patterns of changes in the limiting values of stress/strain invari-
ants in single-phase polycrystalline materials with a cubic lattice were 

studied in [7]. The analysis showed that, along with the main macro-
scopic co-ordinate system 

( )m
ix , in which the non-diagonal components 

of the deviator are equal to zero (main co-ordinate system), there is al-
so a system ( )n

ix , in which the diagonal components are cancelled (auxil-

 

Fig. 2. The influence of volumetric content of the harder phase on the alloy 

heterogeneity parameter. 
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iary system). To determine the position of the auxiliary co-ordinate 

system 
( )n
ix  relative to the main system 

( )m
ix , a parameter of the type of 

stress tensor deviator is introduced into consideration 

 1 3 1 2 3, , 0.5 0d d= σ σ σ ≥ σ ≥ σ − ≤ ≤ . (15) 

 Indices for the eigenvalues σ1, σ2, σ3 of the stress deviator σij are as-
signed based on the condition that inequality (15) is satisfied. The 

form of the stress tensor deviator d can be expressed in terms of devia-
tor invariants σij 

 
33

3
2 32

3

( 1)
,  ,  det

2( 1)
ij ij ij ij

Id d
I I

Id d

σ
σ σ

σ

− +
= ± = σ σ = σ σ

+ +
.  

 In this equality, the sign ‘+’ corresponds to a positive value of the 

component σ1 > 0 and the sign ‘–’ to a negative value σ1 < 0. The orien-
tation of the auxiliary co-ordinate system 

( )n
ix  relative to the main sys-

tem 
( )m
ix  is determined by the following values of the Euler angles [7] 

 
1

,  ,  ( ) arccos ,  ( ) 0.17
2 4 2 4 4

d
d d

d

 π π + π π
ϕ = θ = ψ = ≤ ψ ≤ + 

+ 
. (16) 

 The relationship between the deviator components in the auxiliary 

co-ordinate system 
( )n
ix  and the main values is determined by the 

equalities [7] 

 ( ) ( ) ( ) ( ) ( ) ( )
12 21 3 32 23 13 31 1 2,  2n n n n n nσ = σ = −σ σ = σ = σ = σ = ± − σ σ .  

 According to (23), there are simple relations between the deviator 

components of any symmetric tensor in co-ordinate systems with zero 

diagonal components and zero non-diagonal components. The sign ‘–’ 

corresponds to the value σ1 > 0, and the sign ‘+’ corresponds to the val-
ue σ1 < 0. The listed properties for single-phase polycrystals are also 

preserved in the case of multiphase polycrystals. 
  Let us pass in (9) from the components of strain deviators to the 

components of stress deviators, we obtain the relations  

 ,

, ,
 ( , , )

, ,
k in jm nm

ij k ij ij
k in jm nm

M r r i j
r r

N r r i j

σ σ =σ = = ϕ θ ψ σ σ ≠

 

 

 

, (17) 

 
2 2

M ,N
2 2

k k
k k

k k k

C CG B G B

C A B G C B G

+ +
σ = σ =

+ +
, (18) 

where ϕ, θ, ψ are the Euler angles (they specify the orientation of the 

orthogonal axes of crystallites relative to the main macroscopic co-
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ordinate system). Note that, in (17), (18), both individual characteris-
tics of phases (Ck, Ak) and global characteristics (B, G) appear, which 

depend both on the elastic characteristics of the phases and on their 

volumetric content. 
 Based on (16)–(18) and taking into account the fact that, along with 

the main co-ordinate system, there is also an auxiliary co-ordinate sys-
tem, for alloys with cubic crystal lattices, the theorems can be formulat-
ed. 
 Theorem 1. The maximum values of stress deviator invariants 

(Ak > 1) arise in grains whose crystallographic axes are coaxial with the 

macrosystem in which the diagonal components are equal to zero, and 

the minimum values occur in grains whose crystallographic axes are 

coaxial with the main co-ordinate system. When Ak < 1, the opposite 

picture is observed. 
 Theorem 2. The types of deviators of stress/strain tensors in crys-
tals with extreme values of invariants, in each phase of a polycrystal-
line material, coincide with the macroscopic form, i.e., 

 
3 3 3 3

, ,

, , , ,

det det det det
,

ij k ij ij k ij

ij k ij k ij ij ij k ij k ij ij

σ σ ε ε
= =

σ σ σ σ ε ε ε ε



  

.  

 According to the theorems formulated, the relationship between the 

extreme values of the stress/strain deviator invariants and the corre-
sponding macroscopic invariants Ak > 1 is determined by the relations 

 3
, , ,min ,mindet detij k ij k k ij ij ij k k ijM Mσ σ = σ σ σ σ = σ σ   ,  

 3
, , ,max ,maxdet detij k ij k k ij ij ij k k ijN Nσ σ = σ σ σ σ = σ σ   , (19) 

3
, , ,

(2 )
max ,maxdet det ,

2
k

ij k ij k k ij ij ij k k ij k
k k

G B A
N N N

C A B

+
ε ε = ε ε ε ε = ε ε ε =

+
   ,  

 3
, , ,

2
min ,mindet det ,M

2ij k ij k k ij ij ij k k ij k
k

G B
M M

C B

+
ε ε = ε ε ε ε = ε ε ε =

+
   . (20) 

If Ak < 1, then, in (19), (20), min and max change places. 
 Let us consider the patterns of changes in the limiting values of devi-
ators stress moduli and strain tensors in the phases of Al–Fe and Al–Cu 

alloys depending on the volumetric content of the ‘solid’ phase f2 = f. For 

two-phase polycrystals, relations (18) can be represented in the form 

 

2 ( ) ( )
( , ) ,

2 ( ) ( )

2 ( ) ( )
N ( , ) ,

2 ( ) ( )

k
k

k k

k
k

k

CG f B f
M M f k

C A B f G f

CG f B f
N f k

C B f G f

+
σ = σ =

+

+
σ = σ =

+

 (21) 



600 V. Yu. МARINA and V. I. МARINA 

where the index k, for elastic characteristics Ck, Ak, is assumed to be 

equal to unity k = 1 for the soft phase and k = 2 for the harder phase. 
Figure 3 shows diagrams of changes in parameters (21) for the Al–Fe 

alloy. Curves 1 and 2 describe patterns of changes Nσ(f, 2), Mσ(f, 2) in 

the Fe phase, and curves 2 and 4 show patterns of change Nσ(f, 1), 
Mσ(f, 1) in Al phase respectively. For a better perception of the limits 

of change in the relative values of stress invariants in the grains of 

each phase, 
3

2 , 2 3 , 3( , ) ,  ( , )k kM f k I I I I N f kσ σ σ σσ ≤ ≤ σ 

 the areas be-
tween the parameter values Mσ(f, k) in Nσ(f, k) the grain system are 

shaded (red colour corresponds to Fe phase, brown corresponds to Al). 
From (19), (21) it follows that the specificity of changes pattern in the 

maximum values of invariants 2 ,kI σ


 in k phase is influenced by only one 

constant Ck. 3 ,kI σ


 pattern of changes in the minimum values of invari-
ants 2 ,kI σ



 is 3 ,kI σ


 influenced by two constants k of the phase: Ck, Ak. In 

this case, the width of the zone of change in the limiting values of in-
variants increases with increasing phase anisotropy factor Ak. 
 Figure 4 shows diagrams of changes in parameters (21) for the Al–
Cu alloy. The region of changes in values 

3
2 , 2 3 , 3,  k kI I I Iσ σ σ σ
 

 in the 

Cu phase is shaded in red, and in the Al phase is shaded in purple. From 

those 4 diagrams presented in Fig. 3 and expressions (19), (21), it is 

clear that the dependences of changes in extreme values of invariants 

of deviators of stress tensors in alloys are non-monotonic to the func-
tion f. With an increase in the volumetric content of the harder phase 

Mσ(f, k), the parameters Nσ(f, k) first increase, reaching their highest 

value at f = f* = 0.034, in the case of Al–Fe and f = f* = 0.06 in the case of 

 

Fig. 3. Effect of volumetric Fe content on parameters reflecting the limits of 

change in stress invariants in Al–Fe alloy. 
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Al–Cu alloy, and then decrease monotonically. For the soft phase, a 

violation of monotonicity is observed only in the diagram Mσ′ ∼ f (the 

highest value is achieved at f = 0.01). In the Al–Fe alloy, the highest 

values of invariants max (0.034,2) 2.32Nσ σ = σ =  arise 
3

3 2max 2.32 12.49I Iσ σ = =

 in the Fe phase at f = 0.034, and in the Al–
Cu alloy, max (0.06,2) 1.77Nσ σ = σ = , 3 2max 5.55I Iσ σ =

 in the Cu 

phase at f = 0.06. Calculations carried out for other alloys showed that 

as the ratio increases, C2/C1 the value f = f* in the solid phase decreases 

and Nσ(f*, k) increases. 
 According to Figure 3 in Al–Fe alloy, the zone of change in stress 

invariants in the Fe phase (A2 = 2.41) is greater than in the Al phase 

(A1 = 1.215). In this case, the zone of changes in the local invariants of 

stress tensor deviators in the Fe phase does not intersect with the cor-
responding zone of the Al phase. The Al–Cu alloy variant shown in 

Fig. 4 looks different. Since A2 the width of the zone of change in stress 

invariants increases with growth at a fixed value f, options are possible 

when the corresponding zones intersect. From Figure 4, it is clear that, 

in the case of the Al–Cu alloy (Cu:Al = 3.209), the zone of invariants 

changes in the Al phase completely transforms into the zone of the Cu 

phase. 
 The dependence of the stress-tensor deviator modulus on the orien-
tation factor of the crystallographic co-ordinate system ( , , )σ ϕ = θ θ ψ  

in the Fe phase (f = 0.4) of the Al–Fe alloy under uniaxial tension 

(t1 = 12 MPa) is shown in Fig. 5. Horizontal planes in Fig. 5 establishes 

the limits of change in the deviator modulus of the stress tensor in Fe 

phase crystals under the given test conditions. 

 

Fig. 4. The influence of the volumetric Cu content on parameters reflecting 

the limits of change in stress invariants in Al–Cu alloy. 
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5. ANALYSIS OF THE LIMITING VALUES OF THE FIRST 

STRESS/STRAIN INVARIANT IN POLYCRYSTAL PHASES 

The patterns of changes in volumetric stresses and strains are estab-
lished on the basis of the postulate about the orthogonality of stress 

and strain fluctuations (5). If the postulate about the orthogonality of 

stress and strain fluctuations is extended to each phase, then, Eq. (5), 
taking into account (10), can be represented in the form 

 0, 0 0, 0 , ,( )( ) ( )( )k
k k k ij k ij ij k ij

KK
K K

B
′ ′ ′ ′σ − σ σ − σ = σ − σ σ − σ    . (22) 

 The quantities ,ij k ij
′ ′σ − σ  will be determined based on (17): 
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 (23) 

 When the orientation of the crystallographic co-ordinate system of 

the crystal coincides with the main macroscopic co-ordinate system, 

relation (30) taking into account (23) takes the form 

 2
0 0( )( ) ( 1)k

k k k k ij ij

KK
m K m K M

B
σ − σ σ − σ = σ − σ σ , (24) 

where through σmk denotes the volumetric stress in the grain whose 

crystallographic system is coaxial with the macrosystem 
( )m
ix . The vol-

umetric stress 0,kσ  in the grain, whose crystallographic system is coax-
ial with the co-ordinate system 

( )n
ix  (22), will be denoted by σnk. In this 

case, we have 

 

Fig. 5. Dependence of the stress-tensor deviator modulus on the orientation of 

the crystallographic co-ordinate system in the Fe phase (f = 0.4) of the Al–Fe 

alloy under uniaxial tension (t1 = 12 MPa). 
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σ − σ σ − σ = σ − σ σ . (25) 

 From (24), (25), we establish formulas for extreme values of volu-
metric stresses in a set of polycrystal grains 
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. (27) 

 Writing (26) and (27), there were used notations: σm(f, k) = σmk, 
σn(f, k) = σnk. Both roots of equations (26), (27) have a physical mean-
ing. According to (26), (27), the extreme values of volumetric stresses 

in the phases of a polycrystal depend on the elastic characteristics of 

the crystals and macroscopic stresses: σ0, ij ijσ = σ σ . Volume stresses 

in crystals of arbitrary orientation are determined from (22) taking 

into account (23). 
 The patterns of changes in volumetric stresses depending on the 

volumetric content of the harder phase f were studied for alloys: Al–
Fe, Al–W, Al–Cu. Figure 6 shows diagrams σn ∼ f (curve 1 refers to the 

Fe phase, and curve 3—Al) and σm ∼ f (curve 2—Fe, curve 4—Al) for 

pure macroscopic shear (σ0 = 0, σ = 10 MPa). The region of possible 

changes in volumetric stresses in grains of the Fe phase is shaded in 

red, and Al is shaded in brown. Since in this case solutions (34), (35) 
differ only in sign, Fig. 6 shows only positive values of the diagrams 

 

Fig. 6. The influence of the volumetric Fe content on the limits of change in 

volumetric stresses in the Al–Fe alloy under pure shear. 



604 V. Yu. МARINA and V. I. МARINA 

σm ∼ f, σn ∼ f. 
 According to Figure 7, the width of the zone of change in volumetric 

stresses in the Fe phase is significantly greater than in the Al phase. 
With the volumetric content of iron f = f* = 0.02 in the solid phase, vol-
umetric stress occurs: σn(0.02, 1) = ± 1.4σ. If f < 0.26 in all grains of 

the Fe phase the volumetric stresses are greater than in the Al phase. 
In 0.26 < f < 0.82, the range of changes in volumetric stresses in the Fe 

and Al phases polycrystalline intersect. If f > 0.75, the volumetric 

stresses in the Al phase are greater than in the Fe phase. 
 Figure 8 presents the results of numerical calculations for the Al–
Cu alloy. Diagrams 1 and 2 characterize the limits of changes in invar-
iants in the Cu phase, and diagrams 3, 4—in the Al phase. The region 

of possible changes in volumetric stresses in grains of the Cu phase is 

shaded in red, and in Al—brown. Diagrams presented in Figs. 7, 8 cor-
respond to alloys in which the properties of solid phases are qualita-
tively different: the anisotropy coefficient A2 for Cu is greater than A2 

for Fe and the elastic constant for Cu is less than C44 for Fe. As the con-
stant increases, C2 the largest values of the stress invariants increase, 
and with an increase in the anisotropy coefficient, A2 the width of the 

zone of changes in the invariants increases. From Figures 7, 8, a very 

remarkable effect stands out: in the harder phase, in the f = 0.915 Al–
Fe alloy and in the f = 0.8 Al–Cu alloy, the volume stress 0.2σ  in the 

crystals does not depend on the crystal lattice orientation factor. A 

similar effect is impossible in a single-phase polycrystal, except in the 

case of A = 1. This effect occurs when in equations (26), (27) the equali-

 

Fig. 7. Effect of volumetric Fe content on the limits of changes in volumetric 

stresses in the Al–Fe alloy when stretched. 
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ty 

 2 2( 1) ( 1) , 1 1k k k kN M N Mσ − = σ − σ − = − σ .  

Consequently, for a certain group of alloys there is a concentration of 

the solid anisotropic phase f = f* at which volumetric stresses are the 

same as in the isotropic phase. From (26) and (27), it follows that vol-
umetric macrostress σ0 has a nonlinear effect on the patterns of chang-
es in volumetric stresses in the grains of a polycrystalline material. Let 

us consider the regions of changes in volumetric stresses 0σ  in crystals 

soft two-phase polycrystals: Al–Fe and Al–Cu under uniaxial loading. 
Figure 7 presents the results of numerical studies for the Al–Fe alloy, 
and in Fig. 8—results for Al–Cu. For a better perception of the results, 

a unified diagram notation system and the same external influence 

conditions are used: σ0 = 4.08 MPa, σ = 10 MPa. Diagrams marked with 

odd numbers refer to curves σn ∼ f, and with odd numbers σm ∼ f. Dia-
grams marked with numbers 3, 4, 7, 8 belong to the soft phase (Al) a 

diagrams 1, 2, 5, 6—to the solid phase (Fe or Cu). Curves marked with 

numbers 1–4 correspond to ‘+’ sign in formulas (26) and (27), and 5–
8—to ‘−’ sign. 
 The areas of changes in volumetric stresses 0σ  in the harder phase 

are shaded red when there is a ‘+’ sign in (26), (27) and blue when there 

is a negative sign. In the Al phase, in Figs. 7, 8, the region of changes 

in volumetric stresses 0σ  is shaded brown for ‘+’ sign in (26), (27) and 

green for ‘−’ sign. If the macroscopic volume stress 

0 ( ) / ( )( ( , ) 1)K f B f N f kσσ > − σ , then, in all grains of this from, this 

 

Fig. 8. Effect of volumetric Cu content on the limits of changes in volumetric 

stresses in the Al–Cu alloy under tension. 
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phase 0 0σ > . 
 Comparing the limiting diagrams of changes in volumetric stresses 

(Cu:Al = 3.209) in Al–Fe alloys (Fig. 7) and Al–Cu alloy (Fig. 8), we 

discover a qualitative difference in the laws of change σm ∼ f. In the 

case of the Al–Fe alloy, the lower value of volumetric stress σm(f) de-
creases (diagrams 2 in Fig. 7, 8) to f = 0.52, and then grow in the Al–Cu 

alloy, volumetric stresses σm(f) increase monotonically with increas-
ing f (diagrams 2). Note that the largest range of changes in volumet-
ric stress 0σ  is observed at a low concentration of one of the phases. 
 The patterns of changes in volumetric stresses depending on the ori-
entation of the crystallographic co-ordinate system 0( , , )σ ϕ = θ θ ψ  in 

the Fe phase (f = 0.4) of Al–Fe alloy under uniaxial tension 

(t1 = 12 MPa) are shown in Fig. 9. Calculations were carried out based 

on expressions (22), (23). The roots for volumetric stresses 0σ  have the 

form 0 x yσ = ± . A solution obtained with ‘+’ sign is indicated in or-
ange, and a solution with ‘−’ sign is indicated in blue. Horizontal 
planes in Fig. 9 establish the limits of possible changes in volumetric 

stresses 0σ  in the Fe phase of the Al–Fe alloy. 

6. CONCLUSION 

A system of equations is established to determine the macroscopic 

shear modulus and the heterogeneity parameter of alloys, whose crys-

 

Fig. 9. Dependence of volumetric stresses in the Fe phase (f = 0.4, Al–Fe alloy) 
during tension on the orientation of the crystallographic co-ordinate system. 
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tal symmetry is not lower than cubic one. General expressions are ob-
tained for extreme values of invariants of stress/strain deviators in 

polycrystal phases, which include both individual characteristics of 

the phases (anisotropy factor and crystal shear constant) and global 
characteristics B, G. It is shown that, when the anisotropy factor is 

greater than one, the maximum values of stress deviator invariants 

appear in grains, the crystallographic axes of which are coaxial with 

the macrosystem, in which the diagonal components are equal to zero, 
and the minimum—in grains, the crystallographic axes of which are 

coaxial with the main co-ordinate system. When the anisotropy factor 

is less than one, the opposite picture is observed. 
 It is shown that the invariants of the deviators of the stress tensors 

undergo nonmonotonic changes with increasing volumetric content of 

the harder phase. As the harder phase grows, the invariants first in-
crease, reaching their highest value at f ≅ 0.01 ± 0.06, and then, de-
crease monotonically. Thus, the largest deviations of the limiting val-
ues of the invariants of the deviators of the stress tensors are observed 

at very low values of the concentration of the solid phase. 
 The specificity of the pattern of changes in the maximum values of 

stress deviator invariants in a separate phase is influenced only by the 

corresponding crystal shift constant, and the pattern of changes in the 

minimum values is influenced by both the shift constant and the ani-
sotropy factor. 
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