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The limits of change in stress/strain invariants in the phases of polycrystal-
line materials with cubic lattices are investigated. The relationship between
the local and macroscopic parameters is established on the basis of the follow-
ing principles: averaged connections, orthogonality of fluctuations of the
stress and strain tensors, extremum of discrepancy between the macroscopic
measures and suitable average values of microscopic analogues. General ex-
pressions for extreme values of stress/strain deviator invariants for the pol-
yerystal phases are obtained. The non-monotonic nature of changes in the
extreme values of the invariants of stress/strain deviators and volumetric
stresses/strains depending on the phase concentration is revealed. In case of
a two-phase polycrystal, as the harder phase increases, the invariants first
increase, reaching their maximum value at a concentration of less than 5%,
and then, monotonically decrease. Volumetric macrostress has a nonlinear
effect on the patterns of changes in volumetric stresses in the grains of a pol-
yerystalline material.

Key words: stress, strain, invariants, averaged connections, orthogonality,
anisotropy.

Hocmimxyiorbesa Meski 3MiHu imBapiAHTIB Hampy:keHHA/gedopmaliii y dasax
MOJiKPUCTANIYHNX MaTepianiB 3 KybOiuHmMM rparHuUnaAMU. B3aeMo3B’s30K
Mi’K JIOKQJIPHUMHN Ta MaKPOCKOIIIUHWMM IIapaMeTpPaMU BCTAHOBJIIOETHCA Ha
OCHOBi IPUHITUIIB: cepelHixX 3B’ A3KiB, OPTOTOHAIBLHOCTU (QIIOKTYAIliil TeH30-
piB Hampy:keHb i medopmariii, eKCTpeMyMy HEBiANOBiZHOCTM MaKPOCKOITid-
HUX BeJWYMWH 3 BiAMIOBiIHUMU cepemHIMU 3HAUEHHAMU MiKPOCKOIIIUYHUX aHa-
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JgoriB. Omep:KaHo 3arajgbHiI BUPasu AJS eKCTPEeMaJbHUX 3HAUEHDb iHBapiAHTIB
IeBiATOpiB HaLpy:KeHHA/AedopMmariii y monikpucramiuaux dasax. Ilokazano,
110 3a paKToOpa aHMi3oTpOIrii, OiIBIITOr0 3a OAMHUITIO, MAKCUMAJIbHI 3HAUEHHA
iHBapiAHTIB IeBiATOPiB HAIPYKEHHA BUHUKAIOTH ¥ 3epHaAX, Kprucraaorpadiu-
Hi oci AKWX CHiBBiCHI 3 MAaKpOCUCTEMOIO, B AKill JiATOHANBLHI KOMIIOHEHTH Je-
BifATOpA MOPiBHIOIOTH HYJIIO, a MiHiMaJabHi — y 3epHax, Kpucrajorpadiuui oci
AKUX CIIiBBiCHI 3 rmaBaMu. BcTaHOBI€HO HEMOHOTOHHUI XapaKTep 3SMiH eKCT-
peMaJIbHUX 3HAUYeHb iHBapiAHTIB [eBisATOpiB Hampy:kKeHb/medopmariii Ta
00’eMHUX HANPY:KeHb/medopmariiii Bix KoHIeHTpalii das. [aa agBodasHoro
IMOJIiKPHCTATY 31 3pOCTAaHHAM BMicTy O0inbIt TBepo0i hasu iHBapigHTU crioUaT-
Ky 30iJBITYIOThCS, JOCATAIOUN HAMOiJBIITOTO 3HAUEHHSA 3a KOHIIEHTPAIlil, Me-
Hitroi 3a 5%, a MOTiM MOHOTOHHO 3MeHINYIOThcA. 06’eMHE MaKpPOHATIPYKEHH S
HeJiHifTHO BILIMBAE HA 3aKOHOMIPHOCTI 3MiH 00’€MHUX HANPY/KEHb Y 3epHaX
MOJIIKPUCTANIYHOTO MaTepifamy.

KarouoBi cioBa: Hanpy:keHHsa, nedopMaliia, iHBapiaHTH, ycepenHeHi 3B’ 3K,
OPTOTOHAJBHICTD, aHi30TPOITiA.

(Received 4 December, 2023; in final version, 6 May, 2024 )

1. INTRODUCTION

The construction of constitutive equations relating macrostresses t#;
and macrostrains d;; based on the known constitutive equations at the
level of structural elements, ¢, = d;; is one of the main problems in the
mechanics of a deformed solid. There are three main approaches: sta-
tistical [1-8], self-consistent [9—16] and direct [3, 10, 17]. Static mod-
els include models that consider elements of the lowest scale level with
a sufficient degree of independence from each other; the transition to a
higher scale for some characteristics is carried out by averaging, for
the other part, on the basis of accepted kinematic (Voigt hypothesis),
static (Reuss hypothesis) or intermediate type (Kroener-type hypothe-
ses). Self-consistent models are based on considering a mesolevel ele-
ment surrounded by a material matrix with effective characteristics,
determined iteratively from the properties of mesolevel elements using
the adopted procedure for averaging the latter. Direct models consider
the solution of a boundary value problem for a set of crystals with a
priori given physical equations, which are unknown for irreversible
processes. Numerical implementation in direct methods is usually
based on the finite element method.

Currently, when studying reversible processes, two-level models are
most widespread, in which the relationship between the local and mac-
roscopic parameters is based on linear relationships between stress and
strain fluctuations

T 8081'/' ’
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where only the D and B parameters depend on the model. Based on var-
iational methods [9, 10, 18], it was found that the limiting options
Bijum = (homogeneous strain state d = d,;) and Bijun =0 (homogeneous
stress state £, ;j = t;) correspond to the upper and lower limits of the ef-
fective elastic constants for composite materials of arbitrary struc-
ture. Because of this, intermediate options 0 < B, <% have become
widespread.

It was shown in [4] that linear relationships between fluctuations of
stress and strain do not agree with the first law of thermodynamics and
give overestimated internal stresses in the irreversible region of de-
formation. In particular, the inequality was established

< | id, dt> | <qu><fipq>dt

for any options for changing isotropic tensor Bij.», with the exception
of limiting values: Bijum =0, Bijnm = 0.

Nonlinear equations for the connection between local and macroscop-
ic parameters are based on three principles formulated in [4, 5, 19]: av-
eraged connections, orthogonality of fluctuations of stress and strain
tensors, the extremum of the discrepancy between the macroscopic
measure and a suitable average value of the microscopic analogue.

In Refs. [4-7, 19, 20], nonlinear coupling equations were used to de-
scribe deformation processes in single-phase polycrystalline materials.
In this article, we will analyse the patterns of changes in the limiting
values of stress and strain invariants in multiphase polycrystals with
cubic lattices.

2. GENERAL PROVISIONS OF THE CONSTITUTIVE MODEL

Based on the equilibrium equations of continuous medium and geomet-
ric Cauchy relations, the following expressions have been established
[13,14]:
- 1 ~ ~
ty={t;) = | LAV 4, = (d,), (£,d;) = t,d,» (1)

0 AV,

where t , d, ,; are the stress and strain tensors at each point of the re-
gion AVO, respectlvely, and <> is the sign of averaging over the volume
AVO When deriving (1), it is assumed that the boundary conditions

U, =u =dx,, dj=const, pi(/”s =t,n,, t;=const are satisfied on the
sur%ace So.

Three equations (1) can be represented as one relation

(@ -t,)d, -d))=0. (2)
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From Eq. (2), it follows that the average value of the scalar product
of fluctuations of the stress and strain tensors in the representative
volume is cancelled. In Refs. [13—-15], it was assumed that relation (2)
is satisfied for each material particle. This position is formulated in
the form of a postulate about the orthogonality of fluctuations of
stress and strain tensors in each element of the structure:

&, —t)d; -d;)=0. (3)

Having expanded the stress and strain tensors into deviatoric and
spherical components in (3), we obtain

o iy =€ + €0

t; =6, + G,0

t; =0, +00,,d; =€, +€0,. (4)

ij2 Yij ij?
Let us establish one fundamental equation for the connection between
macro and microstates

(6; —0,;)e; —€;) =3(5, — )&y — &) - (%)

We will establish an expression for fluctuations of stress and strain
deviators based on the condition of equality of the mechanical work of
the system of structural elements and the body element. It was shown
in Ref. [5, 19] that this condition is satisfied by applying the simplest
expression to fluctuations of deviatoric quantities

&, -0, = Be, &), (6)

where B is an internal parameter, which contains information about
the microscopic characteristics of material particles. In what follows,
parameter B will be called the heterogeneity parameter.

In accordance with [5, 19], microscopic variables that have a certain
physical meaning are divided into two categories: variable averaged
values of which depend only on data on the surface of a representative
volume and variable averaged values of which depend not only on data
on the surface, but also on characteristics structures. In particular, in
[56, 19], it is shown that natural macroscopic measures of the energy of
change in volume and shape do not coincide with the corresponding av-
eraged micromeasures. It is natural to assume that variables contain-
ing information about the characteristics of the microstructure of a
material have certain fundamental properties. In [5, 19], a principle
was proposed according to which in real interactions the discrepancy
between a macroscopic measure and a suitable average value of a mi-
croscopic analogue takes on an extreme value. In particular,

A=(8,&)-(6,)(¢,) = Extremum. (7)

ij
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Expressions (1), (5)—(7) represent a closed system of equations for the
relationship between macro- and microstates. They do not contain refer-
ences to the properties of the material; therefore, they are valid for de-
scribing both reversible and irreversible deformation processes. On
their basis, it is possible to construct constitutive equations at the mac-
roscopic level if the constitutive equations at the microscopic level are
known.

3. DETERMINATION OF MACROSCOPIC ELASTIC CONSTANTS
OF MULTIPHASE POLYCRYSTALLINE MATERIALS AND
HETEROGENEITY PARAMETER

Based on (1), (6) and (7), we analyse the influence of the elastic charac-
teristics of the phases and their volumetric content on the macroscopic
elasticity constants and the heterogeneity parameter. When analysing
the behaviour of crystals with a cubic lattice, we will use three inde-
pendent elastic parameters that have a clear physical meaning: Cyy is
shear constant (relates shear stress to shear strain), A is anisotropy
factor, K is volumetric deformation modulus.

The physical equations of crystals, in the crystallographic co-
ordinate system x/, have the form o} =2C,E& /A if i=j and
o, =2C,E; ifi#], co=8Keo. Taking into account these expressions in
(65, we establish the following relations between local and macroscopic
deformations:

;R B+ 2G)F 7
E;l _ (B + 2G)r1nr'1m8nm , é; _ ( ) in jm‘c‘nm , i # ]', r, = COS(xi’,JC») .(8)
B+2C,/A i B+2C,, ! '

Here, &; is the macroscopic deviator of the deformation tensor in the
global co-ordinate system x;, which coincides with the main system.
Let us further agree to denote the elasticity constants of crystals,
stress and strain in phase with weight f, through:
C,=Cui4,K,,6,,,8,, . Then, macroscopic stresses c; and strains &;
can be expressed through the averaged values of stresses <6ij,k> and
strains <§ij,k> in the phases of the polycrystal:

Oy :i<6ij,k>ﬁe’gij zzn:<§ij.k>ﬁe’ iﬁe =1. (9)

Expression (6) for each phase can be represented as

G, — 0y =B, —&;,)- (10)

Writing (8) in the global co-ordinate system and taking into account
expressions (9), (10), after integration over the orientation factor of
the crystal lattice, we obtain
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2A
-y . (11)
2G+B 5 ZC +B 2C +AB

The expression for the extremum of the discrepancy between
measures A (7) can be represented as

A= Z <6-ij,k§ij,k> f, — 0,€; = Extremum . 12)
k=1
Taking into account relations (1) and (10) in (12), we obtain
—Bz <( e —EE, — 8;].)> f, = Extremum. (13)

Substituting into (13), express1ons (8) for each phase and taking in-
to account that € &, =¢, &, ,,¢€.&; =¢.¢, are invariant quantities,
after integrating over the crystal lattice orientation factor, we find:

2 2
_ CumEamB N Z ) % +3 B+2G ) _ 5|f, = Extremum. (14)
10¢ &|°\'2c, +A,B 2C, + B

Based on system (11), (14), it is possible to establish patterns of
change in the shear modulus G and inhomogeneity parameter B in mul-
tiphase materials.

The patterns of changes in parameters G and B scales X-10™* MPa
depending on the volumetric content of the harder phase f (f2=f, fi=1)

10

G(f)

rﬁﬁw \( ~&

0
0.00 0.25 0.50 0.75 1.00
f

Fig. 1. The influence of volumetric content of harder phase on the alloy shear
modulus.
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f

Fig. 2. The influence of volumetric content of the harder phase on the alloy
heterogeneity parameter.

were studied using examples of three two-phase materials: Al-Fe, Al-
W, Al-Cu, having the following elastic characteristics [21]:
Mo(f,k) < \I,., / Lo YL, / I, < No(f, B)A, ,
Fe(4, =2.417, C, =11.6¢), W(4, =0.99, C, =15.14c),
Cu(4, = 38.209, C, = 7.54c),c =10*MPa.

The results of numerical studies for the shear modulus are presented
in Fig. 1. The curve marked in red corresponds to Al-Fe alloy, in lilac
corresponds to A1-W alloy, and in brown corresponds to Al-Cu alloy.
According to Fig.1l, macroscopic shear modulus G=G(f) increases
monotonically with increasing f.

Diagrams for the parameter B = B(f) presented in Fig. 2 have a more
complex appearance compared to the diagram G = G(f). For all studied
materials, a nonmonotonic dependence of the heterogeneity parameter
on f.

4. ANALYSIS OF LIMITING VALUES OF STRESS/STRAIN
INVARIANTS IN POLYCRYSTALLINE PHASES

The patterns of changes in the limiting values of stress/strain invari-
ants in single-phase polycrystalline materials with a cubic lattice were
studied in [7]. The analysis showed that, along with the main macro-
scopic co-ordinate system x™, in which the non-diagonal components
of the deviator are equal to zero (main co-ordinate system), there is al-
so a systemx™ , in which the diagonal components are cancelled (auxil-
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iary system). To determine the position of the auxiliary co-ordinate
system x relative to the main system x™, a parameter of the type of

stress tensor deviator is introduced into consideration

d:01/03,

;|2 o,] 2 [0,],-0.5<d <0. (15)

Indices for the eigenvalues o1, 632, 035 of the stress deviator o;; are as-
signed based on the condition that inequality (15) is satisfied. The
form of the stress tensor deviator d can be expressed in terms of devia-
tor invariants o;;

m :i%/g I, =oc,0
B@ vary VLT

In this equality, the sign ‘+’ corresponds to a positive value of the
component c; >0 and the sign ‘=’ to a negative value 61 <0. The orien-
tation of the auxiliary co-ordinate system x relative to the main sys-
tem x"™ is determined by the following values of the Euler angles[7]

T i 1+d T T
=—, 0==—, y(d) = arccos| ,|—— |, —<vy(d) £=+0.17. 16
¢=7 n w(d) ("2+d} 1 v(d) 1 (16)

The relationship between the deviator components in the auxiliary
co-ordinate system x"’ and the main values is determined by the
equalities[7]

(n) _ (n) _ (n) _ (n) _ _(n) _ _(n) _
Gy = Oy = =03, O39 = Oy3 = Oy3 = O3y = i\1_6162/2 .

According to (23), there are simple relations between the deviator
components of any symmetric tensor in co-ordinate systems with zero
diagonal components and zero non-diagonal components. The sign ‘-’
corresponds to the value o1 >0, and the sign ‘+’ corresponds to the val-
ue o1<0. The listed properties for single-phase polycrystals are also
preserved in the case of multiphase polycrystals.

Let us pass in (9) from the components of strain deviators to the
components of stress deviators, we obtain the relations

1

3o

= det

Gijcij

i’

~ Mckﬁnf}mcnm’i = j’ ~ ~
8 = 7y = 7,(0,0,0), (an

ij,k ~ ~ . .
NGk’;nrijnm’l # I

26+B C, \ _2G+BC,

Mo, =———+—-"+,No, = ———,
2C, + A,B G 2C, +B G

(18)

where ¢, 0, y are the Euler angles (they specify the orientation of the
orthogonal axes of crystallites relative to the main macroscopic co-
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ordinate system). Note that, in (17), (18), both individual characteris-
tics of phases (C:, Ax) and global characteristics (B, G) appear, which
depend both on the elastic characteristics of the phases and on their
volumetric content.

Based on (16)—(18) and taking into account the fact that, along with
the main co-ordinate system, there is also an auxiliary co-ordinate sys-
tem, for alloys with cubic crystal lattices, the theorems can be formulat-
ed.

Theorem 1. The maximum values of stress deviator invariants
(A, > 1) arise in grains whose crystallographic axes are coaxial with the
macrosystem in which the diagonal components are equal to zero, and
the minimum values occur in grains whose crystallographic axes are
coaxial with the main co-ordinate system. When A, <1, the opposite
picture is observed.

Theorem 2. The types of deviators of stress/strain tensors in crys-
tals with extreme values of invariants, in each phase of a polycrystal-
line material, coincide with the macroscopic form, i.e.,

ydet|5,,| gfdet|o,| gldetfe,,| gdet
= = = Py = = = .
VBB OOy By EifBij

According to the theorems formulated, the relationship between the
extreme values of the stress/strain deviator invariants and the corre-
sponding macroscopic invariants A; > 1 is determined by the relations

. ~ ~ _ . ~ _ 3
min /G, ,6,, = Mo,,/c,c,,min det‘cij,k‘ = Mo, det

Gij Sij

b

Gij

max léij,kéij,k = No, /cijcij,maxdet‘éij’k‘ = No’ det‘Gij ) (19)
- ) (2G + B)A
max /g, &, = Nak\laijsij’maXdet|8ij,k| = Nai det|8ii s Ne,, = 20 + A Bk ’
k k
— ) . 3 2G+ B 20
min (g, &, = MakJsijsij,mlndet|8i,-,k| = Mg, det|8ij » Mg, = 29C + B -(20)
k

If A, <1, then, in (19), (20), min and max change places.
Let us consider the patterns of changes in the limiting values of devi-

ators stress moduli and strain tensors in the phases of Al-Fe and Al-Cu
alloys depending on the volumetric content of the ‘solid’ phase f.=f. For
two-phase polycrystals, relations (18) can be represented in the form
2G(f) + B(f) C,
2C, + A,B(f) G(1)
2G(f) + B(f) C,

2C, + B() G()’

Mo, = Mo(f,k) =
(21)

No, = No(f, k) =



600 V.Yu. MARINA and V.I. MARINA

where the index k, for elastic characteristics Ci, A;, is assumed to be
equal to unity £=1 for the soft phase and k=2 for the harder phase.
Figure 3 shows diagrams of changes in parameters (21) for the Al-Fe
alloy. Curves I and 2 describe patterns of changes No(f, 2), Mo(f, 2) in
the Fe phase, and curves 2 and 4 show patterns of change No(f, 1),
Mo(f, 1) in Al phase respectively. For a better perception of the limits
of change in the relative f variants in the grains of
each phase, Mo(f,k) < 12 k/I2 , 3 k/I < No(f,k) the areas be-
tween the parameter values Mo(f, k) in N G(f, k) the grain system are
shaded (red colour corresponds to Fe phase, brown corresponds to Al).
From (19), (21) it follows that the specificity of changes pattern in the
maximum valpes of invariants I,_, in k phase is influenced by only one
constant Cy. I, , pattern of changes in the minimum values of invari-
ants I, » 18 I, influenced by two constants & of the phase: Ci, A;. In
this case, the width of the zone of change in the limiting values of in-
variants increases with increasing phase anisotropy factor A..

Figure 4 shows diagrams of changes in p S he Al-
Cu alloy. The region of changes in values 1/:IZU,Q/IZU, 31 30k I, in the
Cu phase is shaded in red, and in the Al phase is shaded in purple. From
those 4 diagrams presented in Fig. 3 and expressions (19), (21), it is
clear that the dependences of changes in extreme values of invariants
of deviators of stress tensors in alloys are non-monotonic to the func-
tion f. With an increase in the volumetric content of the harder phase
Mo(f, k), the parameters No(f, k) first increase, reaching their highest
value at f=f-=0.034, in the case of Al-Fe and f=f-=0.06 in the case of

No(f), Mo(f)

0.00 0.25 0.50 0.75 1.00

Fig. 3. Effect of volumetric Fe content on parameters reflecting the limits of
change in stress invariants in Al-Fe alloy.
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2.1

No(f), Mo(f)

e
Q

0.0
0.00 0.25 0.50 ; 0.75 1.00

Fig. 4. The influence of the volumetric Cu content on parameters reflecting
the limits of change in stress invariants in A1-Cu alloy.

Al-Cu alloy, and then decrease monotonically. For the soft phase, a
violation of monotonicity is observed only in the diagram Mo’ ~ f (the
highest value is achieved at f=0.01). In the Al-Fe alloy, the highest
values of invariants max 6/c = No(0.034,2) = 2.32 arise
max I, /I, =2.32° =12.49 in the Fe phase at f=0.034, and in the Al-
Cu alloy, max&/c = No(0.06,2) =1.77, max 130/120 =5.55 in the Cu
phase at f=0.06. Calculations carried out for other alloys showed that
as the ratio increases, Cz/C; the value f = f- in the solid phase decreases
and No(f+, k) increases.

According to Figure 3 in Al-Fe alloy, the zone of change in stress
invariants in the Fe phase (4:=2.41) is greater than in the Al phase
(A1 =1.215). In this case, the zone of changes in the local invariants of
stress tensor deviators in the Fe phase does not intersect with the cor-
responding zone of the Al phase. The Al-Cu alloy variant shown in
Fig. 4 looks different. Since A; the width of the zone of change in stress
invariants increases with growth at a fixed value f, options are possible
when the corresponding zones intersect. From Figure 4, it is clear that,
in the case of the Al-Cu alloy (Cu:Al=3.209), the zone of invariants
changes in the Al phase completely transforms into the zone of the Cu
phase.

The dependence of the stress-tensor deviator modulus on the orien-
tation factor of the crystallographic co-ordinate system &(¢ = 6,6, y)
in the Fe phase (f=0.4) of the Al-Fe alloy under uniaxial tension
(t1=12 MPa) is shown in Fig. 5. Horizontal planes in Fig. 5 establishes
the limits of change in the deviator modulus of the stress tensor in Fe
phase crystals under the given test conditions.
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Fig. 5. Dependence of the stress-tensor deviator modulus on the orientation of
the crystallographic co-ordinate system in the Fe phase (f=0.4) of the Al-Fe
alloy under uniaxial tension (¢: =12 MPa).

5. ANALYSIS OF THE LIMITING VALUES OF THE FIRST
STRESS/STRAIN INVARIANT IN POLYCRYSTAL PHASES

The patterns of changes in volumetric stresses and strains are estab-
lished on the basis of the postulate about the orthogonality of stress
and strain fluctuations (5). If the postulate about the orthogonality of
stress and strain fluctuations is extended to each phase, then, Eq. (5),
taking into account (10), can be represented in the form

~ ~ KK ~1 ! ~ ! ’
(6o, — 0 )KG,, — K,0,) = Bk Glix — 0,5}, —O) - (22)

ij,k ij ij
The quantities G, , — c;, will be determined based on (17):

Mo, -7 F o ,i=],
S =0 = g = (23)

’ (No, -7, 7,6,,,i # j.

When the orientation of the crystallographic co-ordinate system of
the crystal coincides with the main macroscopic co-ordinate system,

relation (30) taking into account (23) takes the form
KK,

(om, —6,)(Kom, — K,c,) = (Mo, - 1)2Gi].6 (24)

ij ?
where through om, denotes the volumetric stress in the grain whose
crystallographic system is coaxial with the macrosystem x™ . The vol-
umetric stress G, , in the grain, whose crystallographic system is coax-
ial with the co-ordinate system x™ (22), will be denoted by on,. In this
case, we have
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KK,
B

From (24), (25), we establish formulas for extreme values of volu-
metric stresses in a set of polycrystal grains

(on, —o,)(Kon, - K,c,) =

(No, - l)zcijci].. (25)

om(f k) < Kt K@) J{K_K(f) j KMol k) = 1) 0,0, 96
2K (f) 2K (f) B(f)

on.y - Kt KD J(K_K(f)j Kol o0, oo
2K(f) 2K(f) B(f)

Writing (26) and (27), there were used notations: om(f, k)=ocm.,
on(f, k) =on:. Both roots of equations (26), (27) have a physical mean-
ing. According to (26), (27), the extreme values of volumetric stresses
in the phases of a polycrystal depend on the elastic characteristics of
the crystals and macroscopic stresses: co, 6 = /5,0, . Volume stresses
in crystals of arbitrary orientation are determined from (22) taking
into account (23).

The patterns of changes in volumetric stresses depending on the
volumetric content of the harder phase f were studied for alloys: Al—
Fe, AI-W, Al-Cu. Figure 6 shows diagrams on ~ f (curve I refers to the
Fe phase, and curve 3—Al) and om ~ f (curve 2—Fe, curve 4—Al) for
pure macroscopic shear (co=0, c=10MPa). The region of possible
changes in volumetric stresses in grains of the Fe phase is shaded in
red, and Al is shaded in brown. Since in this case solutions (34), (35)
differ only in sign, Fig. 6 shows only positive values of the diagrams

S 10
g 1
<
5

5 3

2
0 4
0.00 0.25 0.50 0.75 1.00

f

Fig. 6. The influence of the volumetric Fe content on the limits of change in
volumetric stresses in the Al-Fe alloy under pure shear.



604 V.Yu. MARINA and V.I. MARINA

[T

im

(I

s
i i

on(f), om(f)

R
e

0.00 0.25 0.50 0.75 1.00

Fig. 7. Effect of volumetric Fe content on the limits of changes in volumetric
stresses in the Al-Fe alloy when stretched.

om~f,on~f.

According to Figure 7, the width of the zone of change in volumetric
stresses in the Fe phase is significantly greater than in the Al phase.
With the volumetric content of iron f=f-=0.02 in the solid phase, vol-
umetric stress occurs: on(0.02,1)=+1.4c. If f<0.26 in all grains of
the Fe phase the volumetric stresses are greater than in the Al phase.
In 0.26 < f<0.82, the range of changes in volumetric stresses in the Fe
and Al phases polycrystalline intersect. If f>0.75, the volumetric
stresses in the Al phase are greater than in the Fe phase.

Figure 8 presents the results of numerical calculations for the Al-
Cu alloy. Diagrams 1 and 2 characterize the limits of changes in invar-
iants in the Cu phase, and diagrams 3, 4—in the Al phase. The region
of possible changes in volumetric stresses in grains of the Cu phase is
shaded in red, and in Al—brown. Diagrams presented in Figs. 7, 8 cor-
respond to alloys in which the properties of solid phases are qualita-
tively different: the anisotropy coefficient A; for Cu is greater than A,
for Fe and the elastic constant for Cu is less than Cy4 for Fe. As the con-
stant increases, Cs the largest values of the stress invariants increase,
and with an increase in the anisotropy coefficient, A; the width of the
zone of changes in the invariants increases. From Figures 7, 8, a very
remarkable effect stands out: in the harder phase, in the f=0.915 Al-
Fe alloy and in the f=0.8 Al-Cu alloy, the volume stress &,, in the
crystals does not depend on the crystal lattice orientation factor. A
similar effect is impossible in a single-phase polycrystal, except in the
case of A=1. This effect occurs when in equations (26), (27) the equali-
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Fig. 8. Effect of volumetric Cu content on the limits of changes in volumetric
stresses in the Al-Cu alloy under tension.

ty
(No, -1)* =(Mo, -1)>,No, -1=1- Mo, .

Consequently, for a certain group of alloys there is a concentration of
the solid anisotropic phase f={f: at which volumetric stresses are the
same as in the isotropic phase. From (26) and (27), it follows that vol-
umetric macrostress oo has a nonlinear effect on the patterns of chang-
es in volumetric stresses in the grains of a polycrystalline material. Let
us consider the regions of changes in volumetric stresses 6, in crystals
soft two-phase polycrystals: Al-Fe and Al-Cu under uniaxial loading.
Figure 7 presents the results of numerical studies for the Al-Fe alloy,
and in Fig. 8—results for Al-Cu. For a better perception of the results,
a unified diagram notation system and the same external influence
conditions are used: co=4.08 MPa, c =10 MPa. Diagrams marked with
odd numbers refer to curves on ~ f, and with odd numbers cm ~ f. Dia-
grams marked with numbers 3, 4, 7, 8 belong to the soft phase (Al) a
diagrams 1, 2, 5, 6—to the solid phase (Fe or Cu). Curves marked with
numbers 1—4 correspond to ‘+’ sign in formulas (26) and (27), and 5—
8—to ‘-’ sign.

The areas of changes in volumetric stresses &, in the harder phase
are shaded red when there is a ‘+’ sign in (26), (27) and blue when there
is a negative sign. In the Al phase, in Figs. 7, 8, the region of changes
in volumetric stresses 6, is shaded brown for ‘+’ sign in (26), (27) and
green for ‘-’ sign. If +the macroscopic volume stress

c, > K (f) / B(f)(N,(f, k) —1)c, then, in all grains of this from, this
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Fig. 9. Dependence of volumetric stresses in the Fe phase (f = 0.4, Al-Fe alloy)
during tension on the orientation of the crystallographic co-ordinate system.

phase 6, > 0.

Comparing the limiting diagrams of changes in volumetric stresses
(Cu:Al=3.209) in Al-Fe alloys (Fig. 7) and Al-Cu alloy (Fig. 8), we
discover a qualitative difference in the laws of change om ~ f. In the
case of the Al-Fe alloy, the lower value of volumetric stress om(f) de-
creases (diagrams 2 in Fig. 7, 8) to f=0.52, and then grow in the AlI-Cu
alloy, volumetric stresses om(f) increase monotonically with increas-
ing f (diagrams 2). Note that the largest range of changes in volumet-
ric stress G, is observed at a low concentration of one of the phases.

The patterns of changes in volumetric stresses depending on the ori-
entation of the crystallographic co-ordinate system &,(p =6,6,y) in
the Fe phase (f=0.4) of Al-Fe alloy under uniaxial tension
(t1=12 MPa) are shown in Fig. 9. Calculations were carried out based
on expressions (22), (23). The roots for volumetric stresses 6, have the
form 6, = x +/y . A solution obtained with ‘+’ sign is indicated in or-
ange, and a solution with ‘-’ sign is indicated in blue. Horizontal
planes in Fig. 9 establish the limits of possible changes in volumetric
stresses G, in the Fe phase of the Al-Fe alloy.

6. CONCLUSION

A system of equations is established to determine the macroscopic
shear modulus and the heterogeneity parameter of alloys, whose crys-
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tal symmetry is not lower than cubic one. General expressions are ob-
tained for extreme values of invariants of stress/strain deviators in
polycrystal phases, which include both individual characteristics of
the phases (anisotropy factor and crystal shear constant) and global
characteristics B, G. It is shown that, when the anisotropy factor is
greater than one, the maximum values of stress deviator invariants
appear in grains, the crystallographic axes of which are coaxial with
the macrosystem, in which the diagonal components are equal to zero,
and the minimum—in grains, the crystallographic axes of which are
coaxial with the main co-ordinate system. When the anisotropy factor
is less than one, the opposite picture is observed.

It is shown that the invariants of the deviators of the stress tensors
undergo nonmonotonic changes with increasing volumetric content of
the harder phase. As the harder phase grows, the invariants first in-
crease, reaching their highest value at f=0.01 +0.06, and then, de-
crease monotonically. Thus, the largest deviations of the limiting val-
ues of the invariants of the deviators of the stress tensors are observed
at very low values of the concentration of the solid phase.

The specificity of the pattern of changes in the maximum values of
stress deviator invariants in a separate phase is influenced only by the
corresponding crystal shift constant, and the pattern of changes in the
minimum values is influenced by both the shift constant and the ani-
sotropy factor.
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