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В статті обґрунтовано важливість і актуальність проблеми підвищення 

параметрів якости поверхневих шарів відповідальних деталів динамічно-
го обладнання (насосних і компресорних аґреґатів, турбін, центрифуґ і 
т.ін.), які лімітують їхню надійність і довговічність. Підкреслено, що під 

час дослідження параметрів якости поверхневих шарів, синтезованих 

технологіями електроіскрового леґування (ЕІЛ), задля визначення впли-
ву енергетичних параметрів обладнання на їхнє структуроутворення ос-
новна увага приділялася впливу енергії розряду Wр, а величина продук-
тивности оброблення Q [см2/хв.] практично не враховувалася. Щоб оціни-
ти вплив продуктивности на параметри якости одержаних покриттів, в 

дослідженнях використовувалася продуктивність приблизно у два, три й 

чотири рази менша за традиційну, тобто час оброблення τ одиниці площі 
(трудомісткість процесу ЕІЛ) збільшувався у два, три й чотири рази. Про-
ведено дослідження особливостей формування мікроструктури, розподілу 

мікротвердости в покритті, проаналізовано зміну шерсткости. В резуль-
таті мікроструктурної аналізи обробленої поверхні після азотування 

криць 20 і 40 методом ЕІЛ з використанням азотовмісного спеціяльного 

технологічного насичувального середовища встановлено, що для всіх ва-
ріянтів параметра Q структура покриття складається з трьох ділянок — 

«білого шару», дифузійної зони й основного металу. Воднораз зі збіль-
шенням Wр зростають товщини «білого» шару та дифузійної (перехідної) 
зони, збільшуються мікротвердість, шерсткість і суцільність поверхні. Зі 
збільшенням параметра τ зростають товщини «білого» шару та дифузій-
ної (перехідної) зони, збільшуються мікротвердість і суцільність поверх-
ні. Із заміною криці 20 на крицю 40 незначно збільшуються товщини «бі-
лого» шару й дифузійної зони та мікротвердість поверхні. 

Ключові слова: електроіскрове леґування, покриття, матеріял електроди, 
криця, товщина шару, шерсткість, суцільність. 

The importance and relevance of the problem of improving the quality pa-
rameters of surface layers of responsible parts of dynamic equipment (pump 

and compressor units, turbines, centrifuges, etc.), which limit their reliabil-
ity and durability, are substantiated in the article. As emphasized, during 

the investigation of the quality parameters of surface layers synthesized by 

means of the electrospark alloying (ESA) technologies, during determining 

the influence of the energy parameters of the equipment on their structure 

formation, the main attention is paid to the influence of the energy discharge 

Wр, but the value of the processing productivity Q [cm2/min] is not practical-
ly taken into account. For evaluating the impact of productivity on the quali-
ty parameters of obtained coatings, the productivity is used in the research 

approximately two, three, and four times as less than the traditional one, i.e., 
the processing time τ of a unit of area (the labour intensity of the ESA pro-
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cess) is increased by two, three, and four times. Investigation of the features 

of microstructure formation and distribution of microhardness in the coat-
ing is carried out, and changes in roughness are analysed. As a result of the 

microstructural analysis of the treated surface after nitriding of steels 20 

and 40 by the ESA method using a nitrogen-containing special technological 
saturating medium, it is revealed that, for all variants of the parameter Q, 
the structure consists of three areas: the ‘white layer’, the diffusion zone, 
and the base metal. At the same time, with an increase in Wp, the thicknesses 

of the ‘white’ layer and the diffusion (transitional) zone increase, and the 

microhardness, roughness, and integrity of the surface increase too. As the 

parameter τ increases, the thicknesses of the ‘white’ layer and the diffusion 

(transitional) zone increase, and the microhardness and integrity of the sur-
face increase too. During replacing steel 20 with steel 40, the thicknesses of 

the ‘white’ layer and the diffusion zone, as well as the microhardness of the 

surface, increase slightly. 

Key words: electrospark alloying, coating, electrode material, steel, layer 

thickness, roughness, integrity. 

(Отримано 25 грудня 2023 р.; остаточн. варіянт — 20 червня 2024 р.) 
  

1. ВСТУП 

У зв’язку зі зростанням науково-технічного проґресу має підвищу-
ватись якість відповідальних деталів динамічного обладнання (на-
сосних і компресорних аґреґатів, турбін, центрифуґ і т.ін.), які лі-
мітують їхню надійність і довговічність. В процесі підвищення їх-
ніх режимних параметрів (швидкости, температури, тиску, впливу 

радіяції) збільшуються вимоги як до в’язкости та пластичности їх-
ньої основи, так і до захисних властивостей поверхневих шарів. 
Наприклад, з появою конструкції імпульсних ущільнень із зазо-
ром, що самореґулюється, які є найбільш перспективними вузлами 

для ущільнення валів насосів атомних електростанцій (АЕС) з ви-
сокими параметрами [1–3], у технологів-трибологів виникають 

проблеми з забезпеченням експлуатаційних властивостей їхніх ро-
бочих поверхонь тертя [4]. 
 На сьогодні є велика кількість технологій, які здатні поліпшити 

параметри якости поверхонь: підвищити твердість і зносостійкість 

шляхом нанесення металокерамічних покриттів [5–7], натоплен-
ням покриттів з композиційних матеріялів [8, 9], шляхом відцент-
рового армування карбідом Вольфраму [10], з шарами оксиду Алю-
мінію [11–13], хромуванням у проточному електроліті [14] тощо. 

Крім того, серед технологій, спрямованих на забезпечення експлуа-
таційних властивостей поверхонь і, як наслідок, на підвищення на-
дійности та довговічности деталів, слід виділити такі, що напрям-
лені ще на стадії проєктування на забезпечення потрібної геометрії 
поверхневого шару виробу. Так, ряд робіт присвячено дослідженню 
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відцентрових розсіювальних апаратів [15–17], ґравітаційного або 

самопливного транспорту [18], циліндричних поверхонь деталів 

[19]. 
 Перспективним шляхом підвищення зносостійкости поверхонь 

пар тертя можуть бути багатошарові покриття, що поєднують у собі 
змащувальні й антизношувальні властивості [20]. Такими покрит-
тями можуть бути комбіновані покриття, синтезовані методом еле-
ктроіскрового леґування, що поєднують у собі тверді зносостійкі та 

м’які антифрикційні матеріяли [21–25]. 
 Таким чином, нові композиційні матеріяли поєднують захисні 
властивості покриттів із механічною міцністю основи. Деталі, що 

виготовляються з більш дешевого й легко оброблюваного матеріялу 

основи та мають поверхневий шар, одержаний шляхом застосуван-
ня проґресивної, малоенергоємної й екологічно безпечної техноло-
гії, не поступаються, а часто за окремими показниками (довговіч-
ність, вартість, витрата металорізального інструменту й оснастки, 

можливість леґування певними елементами та ін.) перевершують 

деталі, виготовлені з литого матеріялу. Таким чином, технологічні 
рішення, спрямовані на створення принципово нових матеріялів, 
що мають підвищену поверхневу зносостійкість, відносно високу 

міцність і в’язкість [26–29], є актуальними та затребуваними. 
 Особливе місце серед технологій, використовуваних для підви-
щення показників якости поверхонь деталів, займає хеміко-
термічне оброблення (ХТО) [30–32], яке поєднує в собі цементацію, 
азотування, нітроцементацію та ряд інших методів. 
 Одним із затребуваних методів ХТО є алітування [33–35], яке за-
безпечує залізовуглецевим стопам підвищену жужелетривкість, 
опір атмосферній корозії та ряд інших корисних властивостей. 
Крім того, комплексні алюмінійові покриття [36] характеризують-
ся високою температурою топлення, низькою густиною, високим 

модулем пружности, жароміцністю, стійкістю до окиснення і за-
ймання. Незважаючи на позитивні результати, технологія аліту-
вання має ряд недоліків, притаманних ХТО. 
 Багато робіт присвячено опромінюванню алюмінійових стопів 

імпульсними електронними жмутами для поліпшення якости пок-
риттів [37, 38] і способів їхнього нанесення [39–41]. 
 З появою нових технологій підвищення параметрів якости пове-
рхонь деталів машин методом ЕІЛ із застосуванням спеціяльних 

технологічних насичувальних середовищ (СТНС), використання 

яких дає змогу одержувати поверхневі структури з унікальними 

фізико-механічними та трибологічними властивостями на нанорів-
ні. Із ЕІЛ, застосовуючи СТНС, можна одержати однокомпонентні 
покриття: алітувальні [42–44], цементувальні [45–48], азотувальні 

[49] та багатокомпонентні [50–52]. 
 Враховуючи, що за традиційного ХТО найбільш позитивні ре-
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зультати (твердість і глибина зміцненого шару) за азотування за-
безпечують високолеґовані та високовартісні криці, до складу яких 

входить Алюміній (38Х2МЮА, 38ХМЮА, 38Х2ЮА, 38ХВФЮ, 
38Х2Ю, 38Х2Ю), для ЕІЛ із застосуванням СТНС можна викорис-
товувати менш дорогі вуглецеві та хромисті криці (40, 45, 50, 40Х 

та ін.), попередньо леґовані методом ЕІЛ Аl. 
 Таким чином, використовуючи нанесення на зміцнювану повер-
хню СТНС, що містять азотовмісні компоненти, можна проводити 

азотування поверхонь деталів із криці, а попереднє ЕІЛ оброблюва-
ної поверхні Алюмінієм може бути корисним для підвищення па-
раметрів якости їхнього поверхневого шару [52]. 
 Аналіза робіт стосовно азотування, нітроцементації та цемента-
ції поверхонь із криці методом ЕІЛ як компактними електродами-
інструментами, так і з застосуванням СТНС показала, що парамет-
ри якости сформованих поверхневих шарів досліджували переваж-
но залежно від основного параметра роботи обладнання — енергії 
розряду Wр. Водночас величина продуктивности оброблення Q, тоб-
то кількість 100%-обробленої площі в одиницю часу [см2/хв.], 
приймалася згідно з рекомендаціями табл. 1. Також відомо, що для 

більшости матеріялів товщина сформованого на катоді (деталі) ша-
ру обмежена. 
 В роботі [53] стверджується, що в процесі ЕІЛ з часом уповільню-
ється та припиняється осадження матеріялу аноди, а не ерозія та 

його викид. Це пов’язують з утворенням оксидів і нітридів у повер-
хневому шарі, які перешкоджають взаємочину порцій матеріялу 

аноди, які знову надходять на катоду, з раніше нанесеними та при-
зводять до окрихчування та руйнування сформованого шару. 
 Як наслідок вичерпання енергоємности металу за багаторазової 
деформації в контакті з поверхнево-активним розтопом, динаміка 

формування поверхневих шарів характеризується тим, що інтенси-
вність перенесення є максимальною в перші хвилини процесу; далі 
вона зменшується і зрештою, при певних значеннях Wр перенесен-
ня змінюється ерозією вже нанесеного шару, а приріст стає неґати-
вним.  
 Слід відмітити, що наявність між анодою та катодою СТНС пере-
важно в пастоподібному (рідкому) стані приводить до зміни вели-
чини електроіскрового розряду, і процес масоперенесення значно 

відрізняється від традиційного. 

ТАБЛИЦЯ 1. Залежність продуктивности ЕІЛ від енергії розряду. 

TABLE 1. Dependence of ESA productivity on energy discharge. 

Енергія розряду Wр, Дж 0,52 1,3 2,6 4,6 6,8 
Продуктивність, см2/хв. 1,0–1,3 1,3–1,5 1,5–2,0 2,0–2,5 2,5–3,0 
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 Фізико-хемічна природа структуроутворення поверхневого шару 

за ЕІЛ зумовлює великі труднощі вибору технологічних параметрів 

процесу. Тому є наукова та практична доцільність у проведенні до-
сліджень впливу продуктивности ЕІЛ в більшому діяпазоні на па-
раметри якости сформованого поверхневого шару за використання 

компактних електрод-інструментів із застосуванням СТНС. 
 Таким чином, метою даної роботи є підвищення експлуатаційних 

показників деталів із криці шляхом удосконалення технології азо-
тування поверхонь із криці методом ЕІЛ з використанням СТНС за 

рахунок дослідження впливу на параметри якости поверхневих 

шарів трудомісткости процесу. 

2. МЕТОДИ ДОСЛІДЖЕННЯ 

Щоб оцінити вплив продуктивности на параметри якости одержа-
них покриттів, нами в подальших дослідженнях використовувала-
ся продуктивність приблизно у два, три та чотири рази менша, тоб-
то час оброблення τ одиниці площі (трудомісткість процесу ЕІЛ) 

збільшувався у два, три та чотири рази (табл. 2). 
 Враховуючи [52], кращі результати визначено за ЕІЛ алюмінійо-
вою електродою-інструментом і з Wр = 3,40 Дж; тому в подальших 

дослідженнях використовували зазначений режим оброблення. 
 Процес азотування методом ЕІЛ проводили наступним чином. 
Спочатку поверхню зразків із криць 20 і 40 розміром 15×15×8 мм 

леґували Алюмінієм на установці ЕІЛ моделю «Елітрон-52А» із 

енергією розряду Wр = 3,40 Дж за допомогою електроди-
інструменту з алюмінійового дроту ∅ 3,0 мм марки АД згідно з 

ГОСТ 14838-78. Потім на леґовану Алюмінієм поверхню наносили 

СТНС у вигляді пастоподібної суміші, приготовленої замішуванням 

≅ 90% порошку сечовини у вазеліні (10%), і, не чекаючи висихан-
ня, проводили ЕІЛ електродою-інструментом із криць 20 і 40 відпо-
відно для зразків з ідентичних матеріялів із Wр = 0,13, 0,52 й 3,40 

ТАБЛИЦЯ 2. Залежність продуктивности ЕІЛ від енергії розряду. 

TABLE 2. Dependence of ESA productivity on energy discharge. 

Енергія розряду Wр, Дж 0,13 0,52 3,4 

Продуктивність Q, 

см2/хв. 

перший варіянт ≅ 0,3 ≅ 0,6 ≅ 1,0 
другий варіянт ≅ 0,2 ≅ 0,3 ≅ 0,5 
третій варіянт ≅ 0,1 ≅ 0,2 ≅ 0,3 

Трудомісткість τ, 
хв./см2 

перший варіянт ≅ 3,3 ≅ 1,7 ≅ 1,0 
другий варіянт ≅ 5,0 ≅ 3,3 ≅ 2.0 
третій варіант ≅ 10,0 ≅ 5,0 ≅ 3,3 
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Дж і продуктивністю згідно з табл. 2. 
 Для проведення металографічних досліджень підготовлених зра-
зків використовували оптичний мікроскоп «Неофот-2», за допомо-

Перший варіянт 

   
а б в 

Другий варіянт 

   
г ґ д 

Третій варіянт 

   
е є ж 

Рис. 1. Мікроструктури поверхневого шару зразка криці 20 після азоту-
вання методом ЕІЛ з Wр = 0,13, 0,52 й 3,40 Дж і продуктивністю згідно з 

першим, другим і третім варіянтами відповідно до табл. 2. 

Fig. 1. Microstructures of the surface layer of steel 20 sample after nitriding 

by the ESA method with Wр = 0.13, 0.52 and 3.40 J and productivity, accord-
ing to the first, second, and third variants according to the Table 2. 
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гою якого оцінювали якість шару, його суцільність, товщину та бу-
дову зон підшару — дифузійної зони та зони термічного впливу. 
 Також проводили дюрометричну аналізу розподілу мікротвердо-
сти в поверхневому шарі та по глибині шліфу від поверхні. 
 Міряння мікротвердости проводили на мікротвердомірі ПМТ-3 

вдавлюванням алмазної піраміди під навантаженням у 0,05 Н згід-
но з ГОСТ 9450-76. 
 На всіх етапах оброблення вимірювали шерсткість поверхні на 

приладі профілограф-профілометер мод. 201 заводу «Калібр». Ре-
зультати фіксували за допомогою спеціяльної приставки. 

3. РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ 

На рисунку 1 показано мікроструктури поверхневого шару зразка 

криці 20 після азотування методом ЕІЛ з Wр = 0,13, 0,52 й 3,40 Дж і 
продуктивністю згідно з першим, другим і третім варіянтами від-
повідно до табл. 2. 
 Мікроструктурна аналіза показала, що покриття за усіх трьох 

варіянтів (див. табл. 2) складається з трьох ділянок — «білого ша-
ру», дифузійної зони й основного металу. Воднораз за використан-
ня кожного з варіянтів зі збільшенням енергії розряду збільшують-
ся товщини «білого» шару та дифузійної (перехідної) зони. 

ТАБЛИЦЯ 3. Результати дюрометричної аналізи поверхневих шарів кри-
ці 20. 

TABLE 3. Results of durometric analysis of surface layers of steel 20. 

Енергія 

розряду, 
Дж 

Розподіл мікротвердости Hµ у поверхневому шарі  
по мірі поглиблення із кроком міряння у 30 мкм 

30 60 90 120 150 180 210 240 270 300 340 
Криця 20 

Перший варіянт 
0,13 6490 5650 4800 2750 2100 1700 1700     

0,52 9530 8850 8300 7450 5750 3200 2200 1700 1700   

3,4 9870 9250 8560 7950 6850 5520 3160 2500 2100 1700 1700 
Другий варіянт 

0,13 6540 5930 5350 4530 2720 2000 1700 1700    

0,52 9890 9130 8540 7530 5910 4500 3400 2300 1700 1700  

3,4 9910 9340 8790 7980 6420 5150 3650 2450 1950 1700 1700 
Третій варіянт 

0,13 6560 5590 4810 3940 2710 1700 1700     

0,52 9900 9350 8670 7650 6220 4650 3460 2460 2120 1700 1700 
3,4 9920 9550 8650 7550 6520 5250 3740 2950 2240 1700 1700 



ДОСЛІДЖЕННЯ ВПЛИВУ ПРОДУКТИВНОСТИ НА ФОРМУВАННЯ СТРУКТУРИ 1069 

 Крім цього, зі зменшенням продуктивности ЕІЛ збільшуються 

мікротвердість, шерсткість і суцільність поверхні. 
 У таблиці 3 та на рис. 2 представлено розподіл мікротвердости по 

мірі віддалення від поверхні вглиб криці 20 згідно з рис. 1. 
 Результати міряння товщини, мікротвердости та суцільности 

«білого шару», а й величини шерсткости поверхні зразків з криці 
20 після азотування методом ЕІЛ з використанням СТНС зведено до 

табл. 4. 
 На рисунках 3–6 показано залежності товщини зміцненого шару 

(а) і мікротвердости (б) «білого» шару від енергії розряду та трудо-
місткости за азотування методом ЕІЛ криці 20 для наявної техноло-
гії (рис. 3) і першого (рис. 4), другого (рис. 5) та третього (рис. 6) ва-
ріянтів оброблення. 

  
a b 

 
c 

Рис. 2. Розподіл мікротвердости по глибині шару поверхні зразка криці 20 

після азотування методом ЕІЛ, де а, б, в — перший, другий і третій варія-
нти зміни продуктивности відповідно. На графіку: 1, 2 і 3 — ЕІЛ за енер-
гій розряду Wр = 0,13, 0,52 і 3,4 Дж відповідно. 

Fig. 2. Distribution of microhardness along the depth of the surface layer of 

steel 20 sample after nitriding by the ESA method, where а, б, в are the first, 
second, and third variants of changing productivity, respectively. In the 

graph: 1, 2, and 3—ESA at discharge energies Wр = 0.13, 0.52, and 3.4 J, re-
spectively. 
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ТАБЛИЦЯ 4. Параметри якости азотованих шарів, одержаних методом 

ЕІЛ, на зразках із криці 20. 

TABLE 4. Parameters of the quality of nitrided layers obtained by the ESA 

method on steel 20 samples. 
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«білого» 

шару 
перехідної 

зони 

Наявна технологія 
0,13 0,6 1,7 150,0 6350 4350 1,1 70 
0,52 1,2 0,8 160,0 9421 4550 1,5 80 
3,40 2,0 0,5 225,0 9721 4870 6,5 90 

Перший варіянт 
0,13 0,3 3,3 165,0 6490 4750 1,0 80 
0,52 0,6 1,7 175,0 9530 5750 1,6 90 
3,40 1,0 1,0 240,0 9870 6850 6,4 95 

Другий варіянт 
0,13 0,2 5,0 172,5 6540 4810 1,1 100 
0,52 0,3 3,3 185,0 9890 5910 1,5 100 
3,40 0,5 2,0 250,0 9910 6420 6,3 100 

Третій варіянт 
0,13 0,1 10,0 177,5 6560 5350 1,0 100 
0,52 0,2 5,0 190,0 9900 6220 1,4 100 
3,40 0,3 3,3 255,0 9920 6520 6,2 100 
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а б 

Рис. 3. Залежності товщини зміцненого шару (а) та мікротвердости (б) «бі-
лого» шару від енергії розряду й трудомісткости за азотування методом 

ЕІЛ криці 20 за наявною технологією. 

Fig. 3. Dependences of the thickness of the strengthened layer (а) and the mi-
crohardness (б) of the ‘white’ layer on the discharge energy and labour inten-
sity during nitriding by the ESA method of steel 20 for the available technol-
ogy. 

  
а б 

Рис. 4. Залежності товщини зміцненого шару (а) та мікротвердости (б) «бі-
лого» шару від енергії розряду й трудомісткости за азотування методом 

ЕІЛ криці 20 за першим варіянтом оброблення. 

Fig. 4. Dependences of the thickness of the strengthened layer (а) and the mi-
crohardness (б) of the ‘white’ layer on the discharge energy and labour inten-
sity during nitriding by the ESA method of steel 20 for the 1st

 processing var-
iant. 
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а б 

Рис. 5. Залежності товщини зміцненого шару (а) та мікротвердости (б) «бі-
лого» шару від енергії розряду й трудомісткости за азотування методом 

ЕІЛ криці 20 за другим варіянтом оброблення. 

Fig. 5. Dependences of the thickness of the strengthened layer (а) and the mi-
crohardness (б) of the ‘white’ layer on the discharge energy and labour inten-
sity during nitriding by the ESA method of steel 20 for the 2nd

 processing var-
iant. 

  
а б 

Рис. 6. Залежності товщини зміцненого шару (а) та мікротвердости (б) «бі-
лого» шару від енергії розряду й трудомісткости за азотування методом 

ЕІЛ криці 20 за третім варіянтом оброблення. 

Fig. 6. Dependences of the thickness of the strengthened layer (а) and the mi-
crohardness (б) of the ‘white’ layer on the discharge energy and labour inten-
sity during nitriding by the ESA method of steel 20 for the 3rd

 processing var-
iant. 
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 На рисунку 7 показано мікроструктури поверхневого шару зраз-

Перший варіянт 

   
а б в 

Другий варіянт 

   
г ґ д 

Третій варіянт 

   
е є ж 

Рис. 7. Мікроструктури азотованого поверхневого шару зразків криці 40 

за ЕІЛ електродою-інструментом із криці 40 з енергіями розряду: 
Wр = 0,13 (а, б, в), Wр = 0,52 (г, д, е) і Wр = 3,40 Дж (ж, з, і) та трудомісткіс-
тю згідно з табл. 2. 

Fig. 7. Microstructures of the nitrided surface layer of samples of steel 40 

during ESA with an electrode instrument made of steel 40 at discharge ener-
gies: Wр = 0.13 (а, б, в), Wр = 0.52 (г, д, е) and Wр = 3.40 J (ж, з, і) and labour 

intensity, according to the Table 2. 
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ка криці 40 після азотування методом ЕІЛ за продуктивности згідно 

з першим, другим і третім варіянтами відповідно до табл. 2. 
 Аналіза мікроструктур показала, що, як і на рис. 1, поверхневий 

шар за усіх трьох варіянтів (див. табл. 2) складається з трьох діля-
нок — «білого шару», дифузійної зони й основного металу. 
 Також, як і для криці 20, по кожному з варіянтів зі збільшенням 

енергії розряду збільшуються товщини «білого» шару та дифузій-
ної (перехідної) зони. 
 Крім цього, зі зменшенням продуктивности ЕІЛ (збільшенням 

трудомісткости) зростають значення мікротвердости, шерсткости 

та суцільности поверхні. 
 В таблиці 5 і на рис. 8 представлено розподіл мікротвердости в 

поверхневому шарі криці 40 згідно з рис. 7. 
 Результати міряння товщини, мікротвердости та суцільности 

«білого шару», а також величини шерсткости поверхні зразків з 

криці 40 після азотування методом ЕІЛ зведено до табл. 6. 
 На рисунках 9–12 показано залежності товщини зміцненого ша-
ру (а) та мікротвердости (б) «білого» шару від енергії розряду та 

трудомісткости за азотування методом ЕІЛ криці 40 для наявної 
технології (рис. 9) і першого (рис. 10), другого (рис. 11) і третього 

(рис. 12) варіянтів оброблення. 

ТАБЛИЦЯ 5. Результати дюрометричної аналізи поверхневих шарів кри-
ці 40, структури яких представлено на рис. 7. 

TABLE 5. Results of durometric analysis of the surface layers of steel 40, 
structures of which are presented in Fig. 7. 

Енергія 

розряду, 
Дж 

Розподіл мікротвердости Hµ у поверхневому шарі  
по мірі поглиблення із кроком міряння у 30 мкм 

30 60 90 120 150 180 210 240 270 300 340 390 
Перший варіянт 

0,13 7100 6540 5860 5250 4520 3800 2790 1900 1700    

0,52 9980 9320 8610 7360 6330 5220 4170 3240 2210 1700 1700  

3,4 10080 9660 9140 8250 7050 5750 4810 3780 2520 2000 1700 1700 
Другий варіянт 

0,13 7130 6550 5790 5350 4630 4020 2850 2000 1700 1700   

0,52 9990 9230 8450 7350 6500 5500 4300 3250 2230 1700 1700  

3,4 10100 9750 9250 8400 7110 5770 4720 3730 2650 2100 1700 1700 
Третій варіянт 

0,13 7140 5340 4320 3640 2750 2400 2000 1750 1700    

0,52 10010 9360 8560 7480 6000 5000 4000 3240 2300 1700 1700  

3,4 10110 9790 9050 7900 7010 5600 4560 3850 2800 2300 1700 1700 



ДОСЛІДЖЕННЯ ВПЛИВУ ПРОДУКТИВНОСТИ НА ФОРМУВАННЯ СТРУКТУРИ 1075 

4. ВИСНОВКИ 

В результаті аналізи структури поверхневих шарів після азотуван-
ня криць 20 і 40 методом ЕІЛ з використанням азотовмісного СТНС 

встановлено наступне. 
1. Зі збільшенням енергії розряду зростають товщини «білого» ша-
ру та дифузійної (перехідної) зони, а також збільшується мікротве-
рдість, шерсткість і суцільність поверхні. 
2. Зі зменшенням продуктивности ЕІЛ і, відповідно, збільшенням 

трудомісткости процесу зростають товщини «білого» шару та дифу-
зійної (перехідної) зони; крім цього, збільшуються мікротвердість і 
суцільність покриття. 
3. Із заміною криці 20 на крицю 40 незначно збільшуються товщи-

  
a b 

 
c 

Рис. 8. Розподіл мікротвердости по глибині шару поверхні зразка криці 40 

після азотування методом ЕІЛ, де а, б, в — перший, другий і третій варія-
нти зміни продуктивности процесу ЕІЛ відповідно. На графіку: 1, 2 та 3 — 

енергія розряду Wр = 0,13, 0,52 і 3,4 Дж відповідно. 

Fig. 8. Distribution of microhardness along the depth of the surface layer of 

steel 40 sample after nitriding by the ESA method, where а, б, в are the first, 
second, and third variants of changing productivity of the ESA process. In the 

graph: 1, 2, and 3—ESA at discharge energies Wр = 0.13, 0.52, and 3.4 J, re-
spectively. 
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ни «білого» шару й дифузійної (перехідної) зони та мікротвердість 

поверхневого шару. 

ПОДЯКИ 

Результати даної роботи частково було одержано в рамках вико-
нання науково-дослідного проєкту Сумського державного універси-
тету «Розробка екологічно безпечних технологій модифікації пове-
рхні деталей обладнання електростанцій комбінованими методами, 
заснованими на електроіскровому легуванні» за фінансування Мі-
ністерством освіти і науки України (державний реєстраційний 

№ 0124U000539). 

ТАБЛИЦЯ 6. Параметри якости азотованих шарів, одержаних методом 

ЕІЛ на зразках зі криці 40. 

TABLE 6. Quality parameters of nitrided layers obtained by the ESA method 

on steel 40 samples. 
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%

 

«білого» 

шару 
перехідної 

зони 

Існуюча технологія 
0,13 1,7 1,7 155 6650 4350 0,9 85 
0,52 0,8 0,8 165 9850 4550 1,3 90 
3,40 0,5 0,5 230 9910 4870 5,9 95 

Перший варіянт 
0,13 0,3 3,3 170 7100 4500 1,0 90 
0,52 0,6 1,7 180 9980 4570 1,4 95 
3,40 1,0 1,0 245 10080 4970 6,1 100 

Другий варіянт 
0,13 0,2 5,0 180 7130 4540 1,1 100 
0,52 0,3 3,3 190 9990 4630 1,4 100 
3,40 0,5 2,0 255 10100 4980 6,0 100 

Третій варіянт 
0,13 0,1 10,0 185 7140 4540 1,0 100 
0,52 0,2 5,0 195 10010 4590 1,4 100 
3,40 0,3 3,3 260 10110 4920 6,2 100 
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Рис. 9. Залежності товщини зміцненого шару (а) й мікротвердости (б) «бі-
лого» шару від енергії розряду та трудомісткости за азотування методом 

ЕІЛ криці 40 для наявної технології. 

Fig. 9. Dependences of the thickness of the strengthened layer (а) and the mi-
crohardness (б) of the ‘white’ layer on the discharge energy and labour inten-
sity during nitriding by the ESA method of steel 40 for the available technol-
ogy. 

  
а б 

Рис. 10. Залежності товщини зміцненого шару (а) й мікротвердости (б) 
«білого» шару від енергії розряду та трудомісткости за азотування мето-
дом ЕІЛ криці 40 за першим варіянтом оброблення. 

Fig. 10. Dependences of the thickness of the strengthened layer (а) and the 

microhardness (б) of the ‘white’ layer on the discharge energy and labour in-
tensity during nitriding by the ESA method of steel 40 for the 1st

 processing 

variant. 
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Рис. 11. Залежності товщини зміцненого шару (а) й мікротвердости (б) 
«білого» шару від енергії розряду та трудомісткости за азотування мето-
дом ЕІЛ криці 40 за другим варіянтом оброблення. 

Fig. 11. Dependences of the thickness of the strengthened layer (а) and the 

microhardness (б) of the ‘white’ layer on the discharge energy and labour in-
tensity during nitriding by the ESA method of steel 40 for the 2nd

 processing 

variant. 

  
а б 

Рис. 12. Залежності товщини зміцненого шару (а) й мікротвердости (б) 
«білого» шару від енергії розряду та трудомісткости за азотування мето-
дом ЕІЛ криці 40 за третім варіянтом оброблення. 

Fig. 12. Dependences of the thickness of the strengthened layer (а) and the 

microhardness (б) of the ‘white’ layer on the discharge energy and labour in-
tensity during nitriding by the ESA method of steel 40 for the 3rd

 processing 

variant. 
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