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This study analyses numerically the dynamic responses of functionally grad-
ed Al/Al2O3 plates with porosity. It investigates the effects of key parameters 

including thickness-to-span ratio and porosity coefficient on the non-
dimensional fundamental frequencies. Various micromechanical homogeni-
zation models (by Voigt, Mori–Tanaka, LRVE, Tamura, Reuss) are applied 

across different-material volume-fraction distribution profiles (power-law, 
Viola–Tornabene four-parameters’, trigonometric ones). Four porosity-
variation patterns are considered: even, uneven, logarithmic-uneven, and 

mass-density. The Navier solution technique is employed to solve the govern-
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ing equations. Results show that the Viola–Tornabene model produces the 

highest frequencies, followed by power-law and trigonometric models. Mass-
density porosity yields maximum frequencies, while even porosity gives min-
imum values. Increasing porosity coefficient generally increases frequencies, 
except for even porosity. Increasing thickness-to-span ratio decreases fre-
quencies across all models. The findings provide insights for optimizing 

functionally graded porous plate designs. 

Key words: functionally graded materials, elastic foundations, homogeniza-
tion models, dynamic response, porosity, fundamental frequencies. 

В роботі проведено числову аналізу динамічних параметрів відгуків фун-
кціонально ґрадієнтних пористих пластин Al/Al2O3. Досліджено вплив 

ключових параметрів, зокрема відношення товщини до довжини прольо-
ту та коефіцієнта пористости, на безрозмірні основні частоти. Різні моделі 
мікромеханічної гомогенізації (за Фохтом, Морі–Танаки, LRVE, Таму-
рою, Райссом) застосовано до різних профілів розподілу об’ємної частки 

матеріялу (степеневого, чотиропараметричного Віоли–Торнабене, триго-
нометричного). Розглянуто чотири моделі зміни пористости: парний, не-
парний, логаритмічно-непарний і масово-щільний. Для розв’язання кері-
вних рівнянь використовується метод розв’язання за Нав’є. Результати 

показують, що модель Віоли–Торнабене дає найвищі частоти; за нею 

йдуть степеневі та тригонометричні моделі. Масово-щільна пористість дає 

максимальні частоти, тоді як парна пористість дає мінімальні значення. 
Збільшення коефіцієнта пористости зазвичай збільшує частоти, за виня-
тком випадку парної пористости. Збільшення відношення товщини до до-
вжини прольоту понижує частоти у всіх моделях. Одержані результати да-
ють уявлення про оптимізацію конструкцій функціонально ґрадієнтних 

пористих пластин. 

Ключові слова: функціонально ґрадієнтні матеріяли, пружність, моделі 
гомогенізації, динамічний відгук, пористість, основні частоти. 

(Received 1 August, 2024; in final version, 27 August, 2024) 
  

1. INTRODUCTION 

Functionally graded (FG) materials (FGMs) have gained significant 

attention in engineering applications due to their ability to exhibit 

spatially varying properties. These materials offer advantages in 

terms of thermal resistance, reduced residual and thermal stresses, 
and improved fracture toughness. The introduction of porosity in 

FGMs can further improve their performance by reducing weight and 

modifying mechanical properties. 
 This study focuses on the dynamic behaviour of functionally graded 

Al/Al2O3 plates with porosity. The analysis of such structures is cru-
cial for their effective design and application in various fields, includ-
ing aerospace, automotive, and civil engineering [1–3]. 
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 Various research endeavours have contributed significantly to this 

domain. Addou et al. investigated the dynamic response of functional-
ly graded plates resting on Winkler–Pasternak–Kerr foundations with 

varying porosity levels [4]. Their study, employing a simple quasi-3D 

hyperbolic theory, scrutinized the influences of gradient index, poros-
ity, foundation stiffness, mode numbers, and geometry on natural fre-
quencies. Similarly, Zaoui et al. conducted flexural analysis on FG 

plates supported by elastic foundations, employing novel 2D and quasi-
3D higher-order shear deformation theories [5]. 
 Furthermore, the collective contributions of Damani et al., Merdaci 
et al., and Mahmoudi et al. have enriched the field by investigating var-
ious aspects of porous FG plates, including bending, vibration, and dy-
namic analysis. They employed diverse shear deformation theories and 

examined the effects of different parameters on mechanical behaviour. 
Similarly, the works of Berkia et al., Billel, and Benaddi et al. have sig-
nificantly advanced the understanding of FGM and nanoplates. Their 

research includes the effects of parametric homogenization models 

such as by Reuss, LRVE, and Tamura ones on natural frequency, axial, 
and shear stress, and the factors influencing the vibration behaviour 

of FGM nanoplates [6–11]. 
 Researchers have explored advanced computational techniques and 

homogenization models to conduct accurate analyses of porous FG 

plates. Yin et al. introduced a scaled boundary finite element method 

for bending and free vibration analyses [12]. Al Rjoub and Alshatnawi 
utilized artificial neural networks to predict natural frequencies [13], 
while Hu and Fu delved into the intricate effects of porosity distribu-
tion and grading patterns on the free vibration response of FG plates 

[14]. Kaddari et al. investigated the statics and free vibration of FG 

porous plates on elastic foundations, employing a novel quasi-3D hy-
perbolic shear deformation theory [15]. 
 Additional studies have further expanded our understanding of po-
rous FG structures. 
 Sharma et al. introduced a 3D degenerated shell element approach 

for free vibration analysis [16]. Sah and Ghosh explored the free vibra-
tion and buckling behaviour of multi-directional porous FG sandwich 

plates [17], while Kumar et al. conducted free vibration analyses of ta-
pered FG plates with porosity [18,19]. Shahsavari et al. proposed a 

novel quasi-3D hyperbolic theory for free vibration analysis of FG po-
rous plates on elastic foundations [20]. 
 Researchers utilize various mathematical laws to describe the spa-
tial variation of material properties in FGMs, including exponential 
[21], sigmoid [22], and power-law [23] distributions. Further studies 

have examined aspects such as elastic buckling, vibration response, 

and thermal behaviour of porous FG structures [24–31]. 
 The present work aims to provide a comprehensive analysis of the 
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dynamic responses of porous functionally graded plates by considering 

various factors: different micromechanical homogenization models (by 

Voigt, Mori–Tanaka, LRVE, Tamura, Reuss), material volume frac-
tion distribution profiles (power-law, Viola–Tornabene four-
parameter, trigonometric ones), porosity variation patterns (even, un-
even, logarithmic-uneven, mass-density ones), effects of thickness-to-
span ratio and porosity coefficient. 
 By employing the Navier solution technique and conducting para-
metric studies, this research seeks to offer valuable insights into the 

behaviour of porous FGM plates under dynamic loading conditions. 
The findings of this study will contribute to the optimization of FGM 

designs for various engineering applications. 

2. THEORETICAL FORMULATIONS 

2.1. Geometry and Material Properties 

We examine an isotropic functionally graded rectangular plate made 

of a porous material whose properties vary in the thickness direction. 
The plate has thickness h, length a, and width b. A co-ordinate system 

O(x, y, z) is defined with the origin at one corner of the mid-plane of 

the plate, as shown in Fig. 1, a. The edges of the plate are aligned with 

the x and y axes. The plate material is isotropic in the (xy) plane. 
 The plate has isotropic material properties P(z) that vary through 

the thickness direction z. Two key properties, Young’s modulus E(z) 
and mass density ρ(z), follow a power law distribution: 

 b t b

1
( ) ( ) ( )

2

z
P z P P P

h

∆
 = + − + − Ξ φ 
 

, (1) 

where Pb(z) are the values at the bottom face and Pt(z) are the values at 

the top face. The exponent ∆ is a gradient index that controls how rap-
idly the properties change through the thickness. The porosity varies 

through the thickness based on a distribution function Ξ(φ). We exam-
ine two specific forms for Ξ(φ) determined by a porous coefficient φ 

(0 ≤ φ < 0.5) as shown in Fig. 2: 
evenly distributed porosities P1 with 

 t b( ) ( ) / 2P PΞ φ = φ + ; (2) 

unevenly distributed porosities P2 with 

 t b

2
( ) ( ) 1

2

z
P P

h

 φ
Ξ φ = + −  

 
. (3) 
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2.2. Displacement Field 

The four-variable hyperbolic quasi-3D shear deformation theory 

(FHQSDT) proposes a mathematical model for describing the displace-
ment behaviour of FG plates ui (i = 1, 2, 3): 

 0.3 0.4
1 0.1

( , ) ( , )
( , , ) ( , ) ( )

u x y u x y
u x y z u x y z z

x x

∂ ∂
= − + Φ

∂ ∂
,  

 0.3 0.4
2 0,2

( , ) ( , )
( , , ) ( , ) ( )

u x y u x y
u x y z u x y z z

y y

∂ ∂
= − + Φ

∂ ∂
, (4) 

 

Fig. 1. Co-ordinates and geometry notation. 

 

Fig. 2. Illustration of different patterns of porosity variations: evenly dis-
tributed porosities P1 (a), unevenly distributed porosities P2 (b). 
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 3 0.3 0.4( , , ) ( , ) ( ) ( , )u x y z u x y z u x y= + Γ ,  

where u0.1(x, y), u0.2(x, y), u0.3(x, y), and u0.4(x, y) are displacements in 

the directions of x, y, and z, Φ(z) and Γ(z) are the shape functions in the 

longitudinal and transverse shear displacement distributions respec-
tively with the following expressions for Φ(z) and Γ(z): 

 
sech(2 / ) (1 th1)

( )
ch1

z z h z
z

h h

−
Φ = − , (5) 

 
1 2 2 2 2 1 th1

( ) sech 1 th ch
3 ch1

z z z z
z

h h h h h

 −     Γ = − −      
      

. (6) 

2.3. Stress–Strain Relationship 

With small plate strains assumed, strains are related to displacements 

and their derivatives through an equation. This connects the displace-
ment field to strains as follow: 

 

T
1 2 3 4

T
5

( )
{ } ( ) ,

( )
{ } ( ) ,

xx yy xy zz

xz yz

z
z z

z
z

z
z

∂Γ
ε = ε ε γ ε = ε + ε + Φ ε + ε

∂
∂Φ γ = γ γ = + Γ ε ∂ 

 (7) 

in which 

 

2 2
0.3 0.40.1
2 2

2 2
0.2 0.3 0.4

2 2
1 2 3

2 2
0.1 0.2 0.3 0.4

, ,

2 2

0 0 0

u uu
x xx

u u u
y y y

u u u u
y x x y x y

   ∂ ∂∂ 
     ∂ ∂∂     

∂ ∂ ∂    
     ∂ ∂ ∂ε = ε = ε =     
     ∂ ∂ ∂ ∂+     

∂ ∂ ∂ ∂ ∂ ∂     
          

,  

 

0.4

4 5
0.4

0.4

0

0
,

0

u

x
u

yu

  ∂ 
   ∂   ε = ε =   ∂   

∂     

. (8) 

 For linear elastic FG plates, Hooke’s law relates stresses to strains 

through elastic coefficients. The coefficients vary continuously across 

the plate thickness: 
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11 12 13

12 22 23

13 23 33

44

55

66

( ) ( ) ( ) 0 0 0

( ) ( ) ( ) 0 0 0

( ) ( ) ( ) 0 0 0

0 0 0 ( ) 0 0

0 0 0 0 ( ) 0

0 0 0 0 0 ( )

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

Q z Q z Q z

Q z Q z Q z

Q z Q z Q z

Q z

Q z

Q z

σ ε    
    σ ε    
   σ ε    =     τ γ     
     τ γ
     

τ γ       

; (9) 

Qij (i, j = 1, …, 6) are the elastic coefficients calculated as follows: 

 

11 22 33

12 13 23

44 55 66

( )(1 )
( ) ( ) ( ) ,

(1 2 )(1 )

( )
( ) ( ) ( ) ,

(1 2 )(1 )

( )
( ) ( ) ( ) .

2(1 )

E z
Q z Q z Q z

E z
Q z Q z Q z

E z
Q z Q z Q z

− υ
= = =

− υ + υ
υ

= = =
− υ + υ

= = =
+ υ

 (10) 

 The governing equations for porous FG plates on elastic foundations 

are derived using Hamilton’s principle. They mathematically repre-
sent bending and vibration behaviours: 

 ( )P F

0

0
t

U U V K dtδ + δ + δ − δ =∫ . (11) 

 The expressions mentioned represent modifications of the elastic 

strain energy δUP, the elastic strain energy associated with the founda-
tion δUF, the potential energy due to external loads δV, and the varia-
tion of the kinetic energy of the plate δK. 
 A detailed explanation of these energy variations is provided in the 

following sections: 

 
/2

P

/2

( )
h

xx xx yy yy zz zz xz xz yz yz xy xy
h

U dz d
∆ −

δ = σ δε + σ δε + σ δε + τ δγ + τ δγ + τ δγ ∆∫ ∫ , (12) 

 
22

2 3 3
F w 3 s 3

u u
U k u k u d

x y∆

  ∂ ∂    δ = − + δ ∆    ∂ ∂      
∫ , (13) 

 3V q u d
∆

δ = δ ∆∫ , (14) 

 
/2

1 1 2 2 2 2

/2

( )
h

h

K u u u u u u dz d
∆ −

δ = ρ δ + δ + δ ∆∫ ∫       . (15) 

δu0.2, δu0.3, δu0.4 to zero: 
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 0.3 0.4
0.1 0 0.1 1 3:  xyxx

NN u u
u Tu T T

x y x x

∂∂ ∂ ∂
δ + = − +

∂ ∂ ∂ ∂
 

 ,  

 0.3 0.4
0.2 0 0.2 1 3:  xy yyN N u u

u Tu T T
x y y y

∂ ∂ ∂ ∂
δ + = − +

∂ ∂ ∂ ∂
 

 ,  

 

2 22 2 2
0.3 0.3

0.3 w 0,3 s 0 0.32 2 2 2

2 2 2 2
0.1 0.2 0.3 0.3 0.4 0.4

1 2 4 6 0.42 2 2 2

:  2

,

xy yyxx
M MM u u

u k u k T u
x x y y x y

u u u u u u
T T T Tu

x y x y x y

∂ ∂  ∂ ∂ ∂
δ + + − + + = + ∂ ∂ ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂ 
+ + − + + + +    ∂ ∂ ∂ ∂ ∂ ∂     



     



 (16) 

2 22

0.4 2 2

2 2 2 2
0.1 0.2 0.3 0.3 0.4 0.4

3 4 5 6 0.3 7 0.42 2 2 2

:  2

,

xy yy yzxx xz
zz

S S QS Q
u N

x x y y x y

u u u u u u
T T T Tu Tu

x y x y x y

∂ ∂ ∂∂ ∂
δ + + + − − =

∂ ∂ ∂ ∂ ∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂ 
= + − + + + − −    ∂ ∂ ∂ ∂ ∂ ∂     

     

 

 

wherein Nij, Mij, Sij, Qiz, Nzz, and Ti (i = 0, …, 7) are defined as follow: 

 
/2

/2

[ , , ] [1, , ( )] ( , , )
h

ij ij ij ij
h

N M S z z dz i j x y
−

= Φ σ =∫ , (17) 

 
/2

/2

( )
( ) ( , , )

h

ij ij
h

z
Q z dz i j x y

z−

∂Φ = + Γ τ = ∂ ∫ , (18) 

 
/2

/2

( )
h

zz zz
h

z
N dz

z−

∂Γ = σ ∂ ∫ , (19) 

 
0 1 2 3 4 5 6 7

/2
2 2 2

/2

{ , , , , , , , }

{1, , , ( ), ( ), ( ), ( ), ( )} .
h

h

T T T T T T T T

z z z z z z z z dz
−

=

= ρ Φ Φ Φ Γ Γ∫
 (20) 

3. NAVIER SOLUTION TECHNIQUE 

This study investigates simply supported rectangular FG plates. The 

plates are subject to the following boundary conditions: 

 
= = = = = = = =

= = = = = = = =
0.1 0.3 0.4

0.2 0.3 0.4

0 at 0, ,

0 at 0, .
xx xx xx zz

yy yy yy zz

u u u N M S N x a

u u u N M S N y b
 (21) 

 The Navier solution method can be employed to obtain an analytical 
solution to the governing Eqs. (16) by assuming the following forms 

for the unknown quantities u0.1, u0.2, u0.3, u0.4, and q: 
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 0.1 1
1 1

cos( ) sin( )mntimn

m n

u U e x y
∞ ∞

ω

= =

= λ µ∑ ∑ ,  

 0.2 2
1 1

sin cos( )mntimn

m n

u U e x y
∞ ∞

ω

= =

= λ µ∑ ∑ ,  

 0.3 3
1 1

sin( ) sin( )mntimn

m n

u U e x y
∞ ∞

ω

= =

= λ µ∑ ∑ , (22) 

 0.4 4
1 1

sin( ) sin( )mntimn

m n

u U e x y
∞ ∞

ω

= =

= λ µ∑ ∑ ,  

 
1 1

sin( ) sin( )mn
m n

q q x y
∞ ∞

= =

= λ µ∑ ∑ ;  

1 2 3 4, , ,mn mn mn mnU U U U  are coefficients to be determined, and the eigen fre-
quency ωmn is associated with (m, n) eigen mode. Substituting Eqs. (22) 
into Eqs. (16) yields the algebraic equations written in matrix form: 

 

11 12 13 14 11 13 14 1

12 22 23 24 22 23 24 2 2

13 23 33 34 13 23 33 34 3

14 24 34 44 14 24 34 44 4

0 0

0 0

0

mn

mn

mn mn
mn

mn

k k k k m m m U

k k k k m m m U

k k k k m m m m qU

k k k k m m m m U

        
        

       − ω =                           

 (23) 

with 

2 2
11 11 66 12 12 66, ( )k A A k A A= λ + µ = + λµ , 3 2

13 11 12 66( 2 )k B B B= − λ − + λµ ,  

 3 2 2 2
14 13 11 12 66 22 66 22( 2 ) ,k H C C C k A A= − λ + λ + + λµ = λ + µ ,  

 2 3 2 3
23 12 66 22 24 23 12 66 22( 2 ) , ( 2 )k B B B k H C C C= − + λ µ − µ = − µ + + λ µ + µ ,  

 4 4 2 2 2 2
33 11 12 66 w s( ) 2( 2 ) ( )k D D D k k= λ + µ + + λ µ + + λ + µ , (24) 

 2 2 4 4 2 2
34 13 11 12 66( ) ( ) 2( 2 )k I F F F= λ + µ − λ + µ − + λ µ ,  

 2 2 4 4 2 2
44 33 44 13 11 12 66( )( 2 ) ( ) 2( 2 )k L K J G G G= + λ + µ − + λ + µ + + λ µ ,  

 11 22 0 13 1 14 3 23 1 24 3, , , ,m m T m T m T m T m T= = = − λ = λ = − µ = µ ,  

 2 2 2 2 2 2
33 0 2 34 6 4 44 7 5( ), ( ), ( )m T T m T T m T T= + λ + µ = − λ + µ = − λ + µ .  

4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Comparison and Validation Study 

In this section, we conduct a thorough comparison and validation 

study centred on the dynamic behaviour analysis characteristics of 
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functionally graded plates. Non-dimensional fundamental frequencies 

predicted using the current power-law, four-parameter Viola–
Tornabene, and trigonometric models are benchmarked against pub-
lished literature values. Four different patterns of porosity variations 

are applied to analyse further the present approaches by comparing our 

results with work of Addou et al. [4]. 
 The material properties of the functionally graded materials em-
ployed in this study are listed in Table 1. 
 The results align well with previous studies, validating the accura-
cy. This analysis confirms the method's reliability and potential im-
pact, demonstrating its ability to capture the effects of geometric rati-
os and material gradation on FG plate vibration characteristics. The 

proposed model proves valuable for understanding and optimizing 

FGM structures. 

4.2. Parametric Study and Effect of Porous Coefficient φ on the Non-
Dimensional Fundamental Frequencies 

Figures 3 and 4 illustrate the impact of porous coefficient φ on the non-
dimensional fundamental frequencies ω response of a functionally 

graded Al/Al2O3 plate (gradient index ∆ = 1). The study explores the 

influence of three different models for distributing material volume 

fractions through the plate thickness: power-law model, Viola–
Tornabene four-parameter model, and trigonometric model are further 

compared across four different models for porosity conditions are con-
sidered: perfect, even porosity, uneven porosity, logarithmic-uneven 

porosity and mass-density porosity each with varying porosity coeffi-
cients (φ = 0–0.05–0.10–0.15–0.20). 
 Regarding the material volume fraction distribution models, the 

Viola–Tornabene four-parameter profile leads to the maximum ω  val-
ues followed by the power-law and finally the trigonometric model, 

which shows the minimum frequencies. Moreover, the impact of mass-
density distributed porosities is greater followed by uneven distribut-
ed porosities and logarithmic-uneven distributed porosities respective-

TABLE 1. The properties of the materials. 

Material 
Properties 

E, GPa ρ, kg/m3 

Aluminium (Al) 70 2702 

Alumina (Al2O3) 380 3800 
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ly, than the even distributed porosities which shows the minimum fre-
quencies. 
 It is important to note that an increase in the porosity coefficients φ 

leads to an increase in the non-dimensional fundamental frequencies ω  

except in the even distributed porosities, which shows a decrease of 

frequencies with the increase in the porosity coefficients φ. 
 The findings indicate that within the patterns of porosity variations, 
the mass-density distributed porosities consistently yields the highest 

TABLE 2. Comparison of the non-dimensional fundamental frequencies of 

square plate with ∆ = 1. 

h/a Model φ Even 

porosity 
Uneven 

porosity 

Logarithmic-
uneven po-

rosity 

Mass-
density 

porosity 
Perfect 

0.05 

Power-law [4], 
Voigt  

0.05 8.8888 9.0368 9.0368 8.6248 

9.030 
0.10 8.7352 9.0456 9.0456 8.1224 
0.15 8.5656 9.0552 9.0544 7.4713 
0.20 8.3728 9.0656 9.0640 6.5652 

Power-law 

(present), 
Voigt 

0.05 8.9471 9.1716 9.0527 9.2585 

9.0240 
0.10 8.8555 9.3317 9.0810 9.5123 
0.15 8.7451 9.5062 9.1089 9.7882 
0.20 8.6100 9.6973 9.1363 10.0895 

Viola–
Tornabene 

four-
parameter 

(present), 
Voigt 

0.05 11.1603 11.3145 11.1756 11.3682 

9.0240 

0.10 11.2304 11.5503 11.2560 11.6610 
0.15 11.3075 11.8066 11.3375 11.9777 

0.20 11.3927 12.0861 11.4202 12.3216 

Trigonometric 

(present), 
Voigt 

0.05 7.7670 8.0537 7.9407 8.1672 

7.9430 
0.10 7.5512 8.1736 7.9360 8.4117 
0.15 7.2799 8.3038 7.9286 8.6794 
0.20 6.9275 8.4458 7.9181 8.9745 

0.10 

Power-law [4], 
Voigt 

0.05 8.6992 8.8408 8.8402 8.4432 

8.836 
0.10 8.5520 8.8464 8.8458 7.9568 
0.15 8.3898 8.8532 8.8526 7.3262 
0.20 8.2058 8.8606 8.8594 6.4470 

Power-law 

(present), 
Voigt 

0.05 8.7498 8.9649 8.8483 9.0523 

8.8229 
0.10 8.6627 9.1190 8.8732 9.3007 
0.15 8.5575 9.2870 8.8977 9.5706 
0.20 8.4287 9.4710 8.9215 9.8655 

Viola–
Tornabene 

four-
parameter 

(present), 
Voigt 

0.05 10.8413 10.9878 10.8527 11.0453 

10.7812 

0.10 10.9072 11.2112 10.9250 11.3297 
0.15 10.9796 11.4537 10.9982 11.6373 

0.20 11.0597 11.7180 11.0723 11.9714 
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estimates for the non-dimensional fundamental frequencies ω , fol-
lowed by the uneven distributed porosities and logarithmic-uneven 

distributed porosities respectively, while the even distributed porosi-
ties provide the lowest predictions. 
 Concerning the models describing material volume-fraction distri-
bution, the Viola–Tornabene four-parameter profile produces the max-
imum values for non-dimensional fundamental frequencies ω, followed 

by the power-law model, with the trigonometric model exhibiting the 

minimum frequencies. 
 As the value of the porous coefficient, φ increases, there is a rapid 

increase in non-dimensional fundamental frequencies ω, except in the 

even distributed porosities in the power-law model and the trigono-
metric model, which shows a decrease of frequencies with the increase 

in the porosity coefficients φ. 
 Figures 5 and 6 illustrates the impact of thickness-to-span ratio h/a 

on the non-dimensional fundamental frequencies ω response of a func-
tionally graded Al/Al2O3 plate (gradient index ∆ = 1) and porosity coef-
ficients (φ = 0.10). The study explores the influence of three different 

Continuation of Table 2. 

 
Trigonometric 

(present), 
Voigt 

0.05 7.5845 7.8586 7.7480 7.9731 

7.7540 

0.10 7.3767 7.9716 7.7393 8.2119 
0.15 7.1156 8.0942 7.7277 8.4735 
0.20 6.7764 8.2278 7.7127 8.7617 
0.10 7.1168 7.6727 7.4483 7.9150 
0.15 6.8704 7.7847 7.4313 8.1673 
0.20 6.5502 7.9067 7.4107 8.4455 

0.20 

Power-law [4], 
Voigt 

0.05 8.0635 8.1795 8.1795 7.8280 

8.180 
0.10 7.9385 8.1800 8.1800 7.3930 
0.15 7.8015 8.1815 8.1810 6.8285 
0.20 7.6450 8.1835 8.1830 6.0395 

Power-law 

(present), 
Voigt 

0.05 8.0966 8.2831 8.1743 8.3708 

8.1582 
0.10 8.0231 8.4186 8.1897 8.6009 
0.15 7.9341 8.5663 8.2044 8.8511 
0.20 7.8247 8.7282 8.2184 9.1245 

Viola–
Tornabene 

four-
parameter 

(present), 
Voigt 

0.05 9.8296 9.9537 9.8309 10.0199 

9.7804 

0.10 9.8834 10.1408 9.8814 10.2778 
0.15 9.9426 10.3436 9.9321 10.5567 

0.20 10.0079 10.5643 9.9829 10.8596 

Trigonometric 

(present), 
Voigt 

0.05 6.9870 7.2228 7.1203 7.3385 

7.1365 
0.10 6.8041 7.3157 7.1011 7.5586 
0.15 6.5747 7.4162 7.0786 7.7999 
0.20 6.2767 7.5253 7.0524 8.0658 
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models for distributing material volume fractions through the plate 

thickness: power-law model, Viola–Tornabene four-parameter model, 
and trigonometric model and further compared across four different 

models for porosity conditions are considered: Perfect, even porosity, 
uneven porosity, logarithmic-uneven porosity and mass-density poros-
ity each with varying porosity coefficients (φ = 0–0.05–0.10–0.15–
0.20). 
 The results of Figure 5 demonstrate clear trends in fundamental 
frequency predictions across the different modelling approaches. The 

Viola–Tornabene four-parameter distribution model produces the 

highest frequencies, followed by power-law model, while trigonometric 

model give identical lower estimates. For the different patterns of po-
rosity variations, the mass-density distributed porosities yields maxi-
mum frequencies, followed by the uneven distributed porosities and 

  

  

Fig. 3. Effect of porous coefficient φ on the non-dimensional fundamental fre-
quencies for Al/Al2O3-interface plate with different homogenization models 

(∆ = 1, h/a = 0.1). 
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logarithmic-uneven distributed porosities respectively and even dis-
tributed porosities the minimum. A distinct effect of increasing thick-
ness-to-span ratio h/a is observed, with a rapid decline in non-
dimensional fundamental frequencies as the index grows. This h/a-
dependent reduction occurs irrespective of the model utilized. 
 The findings indicate that within the different patterns of porosity 

variations models, the mass-density distributed porosities consistently 

yields the highest estimates for non-dimensional fundamental fre-
quencies ω, followed by the uneven distributed porosities and loga-
rithmic-uneven distributed porosities, while the even distributed po-
rosities provide the lowest and predictions. 
 Concerning the models describing material volume-fraction distri-
bution, the Viola–Tornabene four-parameter profile produces the max-
imum values for non-dimensional fundamental frequencies ω, followed 

by the power-law model, with the trigonometric model exhibiting the 

  

 

Fig. 4. Effect of porous coefficient φ on the non-dimensional fundamental fre-
quencies for Al/Al2O3-interface square plate with different patterns of poros-
ity variations (∆ = 1, h/a = 0.1, 

m m
s w 0k k= = ). 
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minimum deflection. 
 As the thickness-to-span ratio h/a increases, there is a correspond-
ing decrease in the non-dimensional fundamental frequencies ω. 

5. CONCLUSION 

This study presents a comprehensive analysis of the dynamic responses 

of porous functionally graded Al/Al2O3 plates using various homoge-
nization models and material distribution profiles. The following key 

conclusions can be drawn. 
1. The Viola–Tornabene four-parameter model consistently produces 

the highest non-dimensional fundamental frequencies, followed by the 

power-law model, while the trigonometric model yields the lowest fre-

  

  

Fig. 5. Effect of thickness-to-span ratio h/a on the non-dimensional funda-
mental frequencies for Al/Al2O3-interface plate with different homogeniza-
tion models (∆ = 1, φ = 0.1). 
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quencies across all porosity patterns. 
2. Among the porosity variation patterns, mass-density distributed 

porosities result in the maximum frequencies, followed by uneven and 

logarithmic-uneven distributions, with even porosity distribution 

showing the minimum frequencies. 
3. Increasing the porosity coefficient generally leads to an increase in 

non-dimensional fundamental frequencies, except in the case of evenly 

distributed porosities, which shows a decrease in frequencies with in-
creasing porosity. 
4. The thickness-to-span ratio has a significant impact on the dynamic 

response, with increasing ratios resulting in a rapid decline in non-
dimensional fundamental frequencies across all models and porosity 

patterns. 
5. The proposed analytical model demonstrates good agreement with 

previous studies, validating its accuracy and reliability for predicting 

  

 

Fig. 6. Effect of thickness-to-span ratio h/a on the non-dimensional funda-
mental frequencies for Al/Al2O3-interface plate with different patterns of 

porosity variations (∆ = 1, φ = 0.1). 
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the dynamic behaviour of porous FGM plates. 
 These findings provide valuable insights for the design and optimi-
zation of functionally graded porous plates in various engineering ap-
plications. The results can be used to tailor the dynamic properties of 

FGM structures by selecting appropriate material gradation profiles, 
porosity patterns, and geometric parameters. Future work could explore 

the effects of different boundary conditions, thermal loads, and more 

complex geometries on the dynamic behaviour of porous FGM plates. 
 This work was supported by the University research and training 

projects (PRFU), code A01L02UN220120200004, which provide es-
sential support for doctoral training in higher education institutions 

in Algeria. 
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