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This study analyses numerically the dynamic responses of functionally grad-
ed Al/Al:Os plates with porosity. It investigates the effects of key parameters
including thickness-to-span ratio and porosity coefficient on the non-
dimensional fundamental frequencies. Various micromechanical homogeni-
zation models (by Voigt, Mori—Tanaka, LRVE, Tamura, Reuss) are applied
across different-material volume-fraction distribution profiles (power-law,
Viola—Tornabene four-parameters’, trigonometric ones). Four porosity-
variation patterns are considered: even, uneven, logarithmic-uneven, and
mass-density. The Navier solution technique is employed to solve the govern-
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ing equations. Results show that the Viola—Tornabene model produces the
highest frequencies, followed by power-law and trigonometric models. Mass-
density porosity yields maximum frequencies, while even porosity gives min-
imum values. Increasing porosity coefficient generally increases frequencies,
except for even porosity. Increasing thickness-to-span ratio decreases fre-
quencies across all models. The findings provide insights for optimizing
functionally graded porous plate designs.

Key words: functionally graded materials, elastic foundations, homogeniza-
tion models, dynamic response, porosity, fundamental frequencies.

B pobori mpoBeneHo uncioBy aHAMIBy AUHAMIUHMX ITapaMeTpiB BiATYyKiB ¢yH-
KI[iOHAJIBbHO rpafieHTHMX mopuctux miactud Al/Al:Os. Mocaigsxeno BIius
KJIIOYOBUX IIapaMeTpiB, 30KpeMa BiJHOIIEHHA TOBIIWHU O JOBKUHU IIPOJIHO-
Ty Ta KoedirienTa mopucTocT, Ha 6e3po3MipHi ocHOBHI uactoTu. Pisui mozeri
MiKkpoMmexaHiuHOI romorenisarii (3a @oxtom, Mopi—Tamaku, LRVE, Tamy-
poio, Paiiccom) 3acTocoBaHO A0 pisHUX mpo(diniB posmomisy 06’eMHOI YacTKuU
MaTepisanay (cTemeHeBOT0, YoTUpomapamerpuyHoro Bionu—Topuabene, Tpuro-
HOMETPUYHOT0). PO3riIAHYyTO YOTMPY MOJ€eIi 3MiHM IOPUCTOCTU: ITAPHUM, He-
TMapHUH, JOTAPUTMIYHO-HemapHuil i MacoBo-MIiabHUN. 11 po3B’ A3aHHA Kepi-
BHUX PiBHAHb BUKOPHCTOBYETHCA METOJ Po3B’s3aHHA 3a Har’e. PesysmbpraTu
MMOKa3yloTh, M0 Mozenb Biomu—TopHabeme mae HAWBUINI YacTOTH; 3a HEIO
UOyTH CTEIIeHEBi Ta TpUroHOMeTpuYHi Mogeri. MacoBo-11iyibHA TIOPUCTICTE ae
MaKCHUMAaJbHI YaCTOTH, TOAI K IapHA MOPUCTICTDL Ja€ MiHiMaJbHiI 3HAaUEHHS.
30imbiIeHHa KoedilieHTa TOPUCTOCTY 3a3BUYAl 30iIbIITye YACTOTH, 34 BUHSA-
TKOM BUIIAAKY ITapHOI MOPUCTOCTU. 30iMBbINEHHA BiHOIIIEHHA TOBITUHA A0 I0-
BXXUHU IPOJILOTY IOHIIKYE YaCTOTH Y Beix Mozxenax. OmeprkaHi pesyabraTu fa-
I0Th YABJIEHHS IPO ONTHMIi3allil0 KOHCTPYKIiN (DYHKI[IOHAJIBLHO I'DAJiEHTHUX
IIOPUCTUX IIJIACTHH.

KarouoBi ciioBa: GyHKITiOHATBHO I'PANi€HTHI MaTepidAau, MPYKHICTH, MOAEi
romorenisarii, TmHaMiYHUI BiATYK, TOPUCTICTh, OCHOBHI YaCTOTH.

(Received 1 August, 2024; in final version, 27 August, 2024 )

1. INTRODUCTION

Functionally graded (FG) materials (FGMs) have gained significant
attention in engineering applications due to their ability to exhibit
spatially varying properties. These materials offer advantages in
terms of thermal resistance, reduced residual and thermal stresses,
and improved fracture toughness. The introduction of porosity in
FGMs can further improve their performance by reducing weight and
modifying mechanical properties.

This study focuses on the dynamic behaviour of functionally graded
Al/Al;O; plates with porosity. The analysis of such structures is cru-
cial for their effective design and application in various fields, includ-
ing aerospace, automotive, and civil engineering [1-3].
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Various research endeavours have contributed significantly to this
domain. Addou et al. investigated the dynamic response of functional-
ly graded plates resting on Winkler—Pasternak—Kerr foundations with
varying porosity levels [4]. Their study, employing a simple quasi-3D
hyperbolic theory, scrutinized the influences of gradient index, poros-
ity, foundation stiffness, mode numbers, and geometry on natural fre-
quencies. Similarly, Zaoui et al. conducted flexural analysis on FG
plates supported by elastic foundations, employing novel 2D and quasi-
3D higher-order shear deformation theories [5].

Furthermore, the collective contributions of Damani et al., Merdaci
et al., and Mahmoudi et al. have enriched the field by investigating var-
ious aspects of porous FG plates, including bending, vibration, and dy-
namic analysis. They employed diverse shear deformation theories and
examined the effects of different parameters on mechanical behaviour.
Similarly, the works of Berkia et al., Billel, and Benaddi et al. have sig-
nificantly advanced the understanding of FGM and nanoplates. Their
research includes the effects of parametric homogenization models
such as by Reuss, LRVE, and Tamura ones on natural frequency, axial,
and shear stress, and the factors influencing the vibration behaviour
of FGM nanoplates [6—11].

Researchers have explored advanced computational techniques and
homogenization models to conduct accurate analyses of porous FG
plates. Yin et al. introduced a scaled boundary finite element method
for bending and free vibration analyses [12]. Al Rjoub and Alshatnawi
utilized artificial neural networks to predict natural frequencies [13],
while Hu and Fu delved into the intricate effects of porosity distribu-
tion and grading patterns on the free vibration response of FG plates
[14]. Kaddari et al. investigated the statics and free vibration of FG
porous plates on elastic foundations, employing a novel quasi-3D hy-
perbolic shear deformation theory [15].

Additional studies have further expanded our understanding of po-
rous FG structures.

Sharma et al. introduced a 3D degenerated shell element approach
for free vibration analysis [16]. Sah and Ghosh explored the free vibra-
tion and buckling behaviour of multi-directional porous FG sandwich
plates [17], while Kumar et al. conducted free vibration analyses of ta-
pered FG plates with porosity [18,19]. Shahsavari et al. proposed a
novel quasi-3D hyperbolic theory for free vibration analysis of FG po-
rous plates on elastic foundations [20].

Researchers utilize various mathematical laws to describe the spa-
tial variation of material properties in FGMs, including exponential
[21], sigmoid [22], and power-law [23] distributions. Further studies
have examined aspects such as elastic buckling, vibration response,
and thermal behaviour of porous FG structures [24—31].

The present work aims to provide a comprehensive analysis of the
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dynamic responses of porous functionally graded plates by considering
various factors: different micromechanical homogenization models (by
Voigt, Mori—-Tanaka, LRVE, Tamura, Reuss), material volume frac-
tion distribution profiles (power-law, Viola—Tornabene four-
parameter, trigonometric ones), porosity variation patterns (even, un-
even, logarithmic-uneven, mass-density ones), effects of thickness-to-
span ratio and porosity coefficient.

By employing the Navier solution technique and conducting para-
metric studies, this research seeks to offer valuable insights into the
behaviour of porous FGM plates under dynamic loading conditions.
The findings of this study will contribute to the optimization of FGM
designs for various engineering applications.

2. THEORETICAL FORMULATIONS
2.1. Geometry and Material Properties

We examine an isotropic functionally graded rectangular plate made
of a porous material whose properties vary in the thickness direction.
The plate has thickness &, length a, and width b. A co-ordinate system
O(x, y, 2) is defined with the origin at one corner of the mid-plane of
the plate, as shown in Fig. 1, a. The edges of the plate are aligned with
the x and y axes. The plate material is isotropic in the (xy) plane.

The plate has isotropic material properties P(z) that vary through
the thickness direction z. Two key properties, Young’s modulus E(z)
and mass density p(z), follow a power law distribution:

1 =z
_+_

P(z) = B, +(F, —Pb)(z X

] —E2(9), (1)

where Py(z) are the values at the bottom face and Py(z) are the values at
the top face. The exponent A is a gradient index that controls how rap-
idly the properties change through the thickness. The porosity varies
through the thickness based on a distribution function Z(¢). We exam-
ine two specific forms for Z(¢) determined by a porous coefficient ¢
(0<¢$<0.5)as shown in Fig. 2:

evenly distributed porosities P1 with

E(9) =P +R)/2; (2)

unevenly distributed porosities P2 with

==L+ p[1-2H 3)
2t TP h)
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Bottom face: metalic

Fig. 1. Co-ordinates and geometry notation.

Fig. 2. Illustration of different patterns of porosity variations: evenly dis-
tributed porosities P1 (a), unevenly distributed porosities P2 (b).

2.2, Displacement Field

The four-variable hyperbolic quasi-3D shear deformation theory
(FHQSDT) proposes a mathematical model for describing the displace-
ment behaviour of FG platesu; (i=1, 2, 3):

ul(x, Y, 2) =1u, l(x, y) — zw + Q)(Z)M ,
' 0x ox
Uy (%, Y5 2) = U (%, Y) — Z%yx’y) + @(z)w, (4)
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Ug (.’JC, Y, Z) =Uys (x’ y) + F(Z) Up 4 (x’ y) ’

where uo.1(x, y), wo.2(x, y), wos(x,y), and uo.s(x, y) are displacements in
the directions of x, y, and z, ®(z) and I'(z) are the shape functions in the
longitudinal and transverse shear displacement distributions respec-
tively with the following expressions for ®(z) and I'(z):

zsech(2z /h) 2(1-th1) (5)
h hchl ~°

F(Z):iseCh(%j[l_%th(%j_Ch(%Jl_thlJ- ©)
3h h ok h) chl

2.3. Stress—Strain Relationship

D(2) =

With small plate strains assumed, strains are related to displacements

and their derivatives through an equation. This connects the displace-
ment field to strains as follow:

E={e,, €, Yy €.} =& + 52+ D(2)g, + &54,
0D(2) (7
Y=V v} = ( + F(Z)) &5
in which
Oy azuo.s a2“0.4
Ox ox? ox?
Oy, 62u0.3 a2“0.4
51: ay ’52: ayz 753: 5!/2 ’
Otty.y + Oty 2 Oty 2 Oty
oy ox dxdy dxdy
0 0 0
0 ou,,
0 ox
- T = 3
= 0 % OUy 4 ®)
Up 4 %y

For linear elastic FG plates, Hooke’s law relates stresses to strains
through elastic coefficients. The coefficients vary continuously across
the plate thickness:
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O x @,(2) Q;(2) @;(2) 0 0 0 €.,
Oy Q,(2) @yy(2) Qy(2) 0 0 0 €,
0| 0@ @@ @ 0 0o [fa] o
T,z 0 0 0 Q,(2) 0 0 Yye
Tz 0 0 0 0 Q55(2) 0 Yz
Ty 0 0 0 0 0 Qs(2)] Vs,

®i;(i,j=1, ..., 6)are the elastic coefficients calculated as follows:

B B _ E(z)1-v)
Q),(2) = Q,,(2) = Qy(2) = 2001 0)
B B 3 E(z2)v
Qur(@) = Qi) = Qu@) = 5~ (10)
E(2)

Q44(2) = Q55(2) = Qes(z) = 2(1 N \_)) .

The governing equations for porous FG plates on elastic foundations
are derived using Hamilton’s principle. They mathematically repre-
sent bending and vibration behaviours:

t
[(8U, +8U, +8V -8K) dt = 0. (11)
0

The expressions mentioned represent modifications of the elastic
strain energy 6Up, the elastic strain energy associated with the founda-
tion 8Ur, the potential energy due to external loads 8V, and the varia-
tion of the kinetic energy of the plate 0K.

A detailed explanation of these energy variations is provided in the
following sections:

h/2

8Up = [ [ (086, +0,88, + 0,06, + 1,87, +1,.8,, + 1,07, )dz dA,, (12)

A -h/2
2 2
SUF :j kwug—ks % + % 8u3 dA, (13)
A ox 6y

8V=.[Aq du, dA, (14)

h/2
8K = [ [ pluydu, + 0, + uydit,)dz dA . (15)

A —h/2

duLo.2, Ollo.3, Ollo.4 tO Zero:
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ON ON ) i
6u01 xx Xy __ T;)uo L Tl au03 + 7’; au’0.4 "
ox dy ox
Suy ON,, n ON,, T, , — T, Oty 5 + T, Oty 4 ,
ox oy oy
2 *M,, o°M 2 2
8uo 3 aajwzxx 2 P axy P zyy kwuos + ks [aau(;g + aaug3j = Touos +
(16)
.. .. 2 .. 2 .. 2 .. 2 ..
+Tl (a;l'o.l + a;‘0.2 j _ T2 (6611‘02.3 + 6@“‘(;.3 J + T4 [aauoz.zi + aau%4 ] + Tzsiio.v
X y x Y X Y
2 2
Su . 6zsxx + 2 a Sxy + a S.l/.'/ + _ anz _ aQ.'/Z —
0.4 °

ox® oxdy oy’ = ox oy

.. . 2. 9. 9 .. 2.
=T, ago‘l + Oldyy | _ T, 0 u02.3 + 0 ug.s + T, 0 uo2.4 + 0 u(;A Ty 5 — Ty ,»
x oy ox oy ox oy

wherein N;;, Myj, Sij, Qizy N2, and T (i =0, ..., 7) are defined as follow:

h/2
[N, M,,S,]= j [1, 2, ®(2)]o,dz (i, = x,Y) , (17)
-h/2
h/2
Qij = I (a(D(Z) + F(Z)j Tide (l’.] =X, y)a (18)
h2 0z
h/2
N, = | [—8r(2)j022d2, (19)
e 0z

{1,,1,,1,,T,,T,, T;, T;, T,} =
/2

= [ pll,2,2°,0(2), 20(2), ®*(2), [(2), T (2)}dz.

~h/2

(20)

3. NAVIER SOLUTION TECHNIQUE

This study investigates simply supported rectangular FG plates. The
plates are subject to the following boundary conditions:

uO.l :u0.3 :u0.4 :Nxx :Mxx :Sxx :sz :Oatx:()’a’

(21)
Upy =Uyg =Uy, =N, =M, =S, =N_=0aty=0,0.

The Navier solution method can be employed to obtain an analytical
solution to the governing Eqgs. (16) by assuming the following forms
for the unknown quantities uo.1, %o.2, Uo.3, Uo.4, and q:
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Uy, = . U™ cos(hx) sin(ny) ,

m=1 n=1

Uy, = D D Upte sinkx cos(uy),

m=1 n=1

Upsz = Z ZU:;nneiwm"t sin(Ax) sin(py), (22)

m=1 n=1

Uy, = . > Upte sin(hx) sin(ny),

m=1 n=1

7= g, sin(hx) sin(uy) ;

m=1 n=1

um,u,”, U, U™ are coefficients to be determined, and the eigen fre-
quency o, is associated with (m, n) eigen mode. Substituting Eqgs. (22)
into Egs. (16) yields the algebraic equations written in matrix form:

By, Ry, ks Rk, m, 0 my; m, U 0
Ry Ry Ry ky B 0 my, my my (Dfn ) Uz: : _ 0 (23)
Ry Ry Ry ky Mz My Mgy Mgy U Qnn
Ry Ry ky Ry my My My, My, U 0
with

By, = ‘4117L2 + Aesuz’ By = (A, + A, kg = _3117‘3 —(B,; + 2By )7““2 ’
k, =—-H \+ CHKS +(C,, +2C u?, Ry, = Aﬁﬁkz + Azzuz "

by, = —(B,, + 2B ST 322”3’ By = —Hygp + (Cyy + 2C, A + szug ’
ks, = D11(7“4 +ut)+ 2(D,, + 2D W2u® + k, + kS(K2 +u?), (24)

ky, = Ilg(k2 +u?) - F11(7“4 +ut) - 2(F, + 2F66)}\’2 2
ky, = Lo, + 2+ },tz)(K44 —2J;)+ G11(7”4 +ut)+ 2(G,, + 2G66))\‘2 2
my, = my, =Ty, myz = -T)A, my, = Th, my;, = -Tip, my, = Top,
Mg = Ty + Ty02 + 1), iy, = Ty = T,02 4 02, my, =T, — T, 02 + 129

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Comparison and Validation Study

In this section, we conduct a thorough comparison and validation
study centred on the dynamic behaviour analysis characteristics of
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TABLE 1. The properties of the materials.

Properties
Material
E, GPa p, kg/m3
Aluminium (Al) 70 2702
Alumina (Al:03) 380 3800

functionally graded plates. Non-dimensional fundamental frequencies
predicted using the current power-law, four-parameter Viola—
Tornabene, and trigonometric models are benchmarked against pub-
lished literature values. Four different patterns of porosity variations
are applied to analyse further the present approaches by comparing our
results with work of Addou et al.[4].

The material properties of the functionally graded materials em-
ployed in this study are listed in Table 1.

The results align well with previous studies, validating the accura-
cy. This analysis confirms the method’s reliability and potential im-
pact, demonstrating its ability to capture the effects of geometric rati-
os and material gradation on FG plate vibration characteristics. The
proposed model proves valuable for understanding and optimizing
FGM structures.

4.2, Parametric Study and Effect of Porous Coefficient ¢ on the Non-
Dimensional Fundamental Frequencies

Figures 3 and 4 illustrate the impact of porous coefficient ¢ on the non-
dimensional fundamental frequencies ®» response of a functionally
graded Al/Al;Os plate (gradient index A=1). The study explores the
influence of three different models for distributing material volume
fractions through the plate thickness: power-law model, Viola—
Tornabene four-parameter model, and trigonometric model are further
compared across four different models for porosity conditions are con-
sidered: perfect, even porosity, uneven porosity, logarithmic-uneven
porosity and mass-density porosity each with varying porosity coeffi-
cients (¢ =0-0.05-0.10-0.15-0.20).

Regarding the material volume fraction distribution models, the
Viola—Tornabene four-parameter profile leads to the maximum @ val-
ues followed by the power-law and finally the trigonometric model,
which shows the minimum frequencies. Moreover, the impact of mass-
density distributed porosities is greater followed by uneven distribut-
ed porosities and logarithmic-uneven distributed porosities respective-
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ly, than the even distributed porosities which shows the minimum fre-

quencies.

It is important to note that an increase in the porosity coefficients ¢
leads to an increase in the non-dimensional fundamental frequencies ®
except in the even distributed porosities, which shows a decrease of
frequencies with the increase in the porosity coefficients ¢.

The findings indicate that within the patterns of porosity variations,
the mass-density distributed porosities consistently yields the highest

TABLE 2. Comparison of the non-dimensional fundamental frequencies of
square plate with A =1.

Even Uneven Logarithmic- Mags-
h/a Model [0} . . uneven po- density | Perfect
porosity | porosity rosity porosity
0.05 8.8888  9.0368 9.0368 8.6248
Power-law[4], 0.10 8.7852  9.0456 9.0456 8.1224 o o0
Voigt 0.15 8.5656  9.0552 9.0544 7.4713 )
0.20 8.3728  9.0656 9.0640 6.5652
b | 0.05 8.9471 9.1716 9.0527 9.2585
ower-law .10 8.8555  9.3317 9.0810 9.5123
Bl 015 87451 95062 91089  9.7882 o
0.20 8.6100 9.6973 9.1363 10.0895
0.05 Viola— 0.05 11.1603 11.3145 11.1756 11.3682
Tornabene 0.10 11.2304 11.5503 11.2560 11.6610
four- 0.15 11.3075 11.8066 11.3375 11.9777  9.0240
parameter
(present), .20 11.3927 12.0861 11.4202 12.3216
Voigt
. ~0.05 7.7670  8.0537 7.9407 8.1672
Trigonometric o 19 75512  8.1736 7.9360 8.4117 4
Plsel 015 7.2799 83038 70286  8.6794 O
0.20 6.9275  8.4458 7.9181 8.9745
0.05 8.6992  8.8408 8.8402 8.4432
Power-law[4], 0.10 8.5520  8.8464 8.8458 7.9568 o oo
Voigt 0.15 8.3898  8.8532 8.8526 7.3262 )
0.20 8.2058  8.8606 8.8594 6.4470
0.05 8.7498  8.9649 8.8483 9.0523
fgxgzéi‘;" 0.10 8.6627 9.1190 8.8732 9.3007 8.8229
0.10 Voigt ~~ 0-15 85575  9.2870 8.8977 9.5706 )
0.20 8.4287  9.4710 8.9215 9.8655
Viola— 0.05 10.8413 10.9878 10.8527 11.0453
Tornabene 0.10 10.9072 11.2112 10.9250 11.3297
four- 0.15 10.9796 11.4537 10.9982 11.6373 10.7812
parameter
(present), 020 11.0597 11.7180 11.0723 11.9714

Voigt
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Continuation of Table 2.

0.05 7.5845 7.8586 7.7480 7.9731
0.10 7.3767 7.9716 7.7393 8.2119
Trigonometric 0.15  7.1156  8.0942 7.7277 8.4735
(present), 0.20 6.7764  8.2278 7.7127 8.7617  17.7540
Voigt 0.10 7.1168  17.6727 7.4483 7.9150
0.15 6.8704  7.7847 7.4313 8.1673
0.20 6.5502  7.9067 7.4107 8.4455
0.05 8.0635 8.1795 8.1795 7.8280
Power-law[4], 0.10 7.9385  8.1800 8.1800 7.3930
Voigt 0.15 17.8015 8.1815 8.1810 6.8285
0.20 17.6450 8.1835 8.1830 6.0395
b | 0.05 8.0966 8.2831 8.1743 8.3708
r-law
(&Z‘éenm, 0.10 8.0231 8.4186 8.1897 8.6009 o .o,
Voigt 0.15 7.9341 8.5663 8.2044 8.8511
0.20 17.8247  8.7282 8.2184 9.1245

8.180

0.20 Viola— 0.05 9.8296  9.9537 9.8309 10.0199
Tornabene (.10 9.8834 10.1408 9.8814 10.2778
four- 0.15 9.9426 10.3436 9.9321 10.5567 9.7804
parameter
(present), .20 10.0079 10.5643 9.9829 10.8596
Voigt
. ~0.05 6.9870 7.2228 7.1203 7.3385
Trigonometric o 10 8041  7.3157 7.1011 7.5586
(present), 7.1365
Voigt 0.15 6.5747  17.4162 7.0786 7.7999

0.20 6.2767  7.5253 7.0524 8.0658

estimates for the non-dimensional fundamental frequencies ®, fol-
lowed by the uneven distributed porosities and logarithmic-uneven
distributed porosities respectively, while the even distributed porosi-
ties provide the lowest predictions.

Concerning the models describing material volume-fraction distri-
bution, the Viola—Tornabene four-parameter profile produces the max-
imum values for non-dimensional fundamental frequencies w, followed
by the power-law model, with the trigonometric model exhibiting the
minimum frequencies.

As the value of the porous coefficient, ¢ increases, there is a rapid
increase in non-dimensional fundamental frequencies ®, except in the
even distributed porosities in the power-law model and the trigono-
metric model, which shows a decrease of frequencies with the increase
in the porosity coefficients ¢.

Figures 5 and 6 illustrates the impact of thickness-to-span ratio #/a
on the non-dimensional fundamental frequencies o response of a func-
tionally graded Al/Al;O; plate (gradient index A= 1) and porosity coef-
ficients (¢ =0.10). The study explores the influence of three different
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Even porosity

Uneven porosity

: . F | =t B i
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Fig. 3. Effect of porous coefficient ¢ on the non-dimensional fundamental fre-
quencies for Al/Al:Os-interface plate with different homogenization models
(A=1,h/a=0.1).

models for distributing material volume fractions through the plate
thickness: power-law model, Viola—Tornabene four-parameter model,
and trigonometric model and further compared across four different
models for porosity conditions are considered: Perfect, even porosity,
uneven porosity, logarithmic-uneven porosity and mass-density poros-
ity each with varying porosity coefficients (¢ =0-0.05—-0.10-0.15-
0.20).

The results of Figure 5 demonstrate clear trends in fundamental
frequency predictions across the different modelling approaches. The
Viola—Tornabene four-parameter distribution model produces the
highest frequencies, followed by power-law model, while trigonometric
model give identical lower estimates. For the different patterns of po-
rosity variations, the mass-density distributed porosities yields maxi-
mum frequencies, followed by the uneven distributed porosities and
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Fig. 4. Effect of porous coefficient ¢ on the non-dimensional fundamental fre-
quencies for Al/Al:Os-interface square plate with different patterns of poros-
ity variations (A=1, k/a=0.1, B =k =0).

logarithmic-uneven distributed porosities respectively and even dis-
tributed porosities the minimum. A distinct effect of increasing thick-
ness-to-span ratio h/a is observed, with a rapid decline in non-
dimensional fundamental frequencies as the index grows. This &/a-
dependent reduction occurs irrespective of the model utilized.

The findings indicate that within the different patterns of porosity
variations models, the mass-density distributed porosities consistently
yields the highest estimates for non-dimensional fundamental fre-
quencies o, followed by the uneven distributed porosities and loga-
rithmic-uneven distributed porosities, while the even distributed po-
rosities provide the lowest and predictions.

Concerning the models describing material volume-fraction distri-
bution, the Viola—Tornabene four-parameter profile produces the max-
imum values for non-dimensional fundamental frequencies m, followed
by the power-law model, with the trigonometric model exhibiting the
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minimum deflection.
As the thickness-to-span ratio h/a increases, there is a correspond-
ing decrease in the non-dimensional fundamental frequencies .

5. CONCLUSION

This study presents a comprehensive analysis of the dynamic responses
of porous functionally graded Al/Al;O; plates using various homoge-
nization models and material distribution profiles. The following key
conclusions can be drawn.

1. The Viola—Tornabene four-parameter model consistently produces
the highest non-dimensional fundamental frequencies, followed by the
power-law model, while the trigonometric model yields the lowest fre-
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Fig. 6. Effect of thickness-to-span ratio Z/a on the non-dimensional funda-
mental frequencies for Al/Al:Os-interface plate with different patterns of
porosity variations (A=1, ¢ =0.1).

quencies across all porosity patterns.

2. Among the porosity variation patterns, mass-density distributed
porosities result in the maximum frequencies, followed by uneven and
logarithmic-uneven distributions, with even porosity distribution
showing the minimum frequencies.

3. Increasing the porosity coefficient generally leads to an increase in
non-dimensional fundamental frequencies, except in the case of evenly
distributed porosities, which shows a decrease in frequencies with in-
creasing porosity.

4. The thickness-to-span ratio has a significant impact on the dynamic
response, with increasing ratios resulting in a rapid decline in non-
dimensional fundamental frequencies across all models and porosity
patterns.

5. The proposed analytical model demonstrates good agreement with
previous studies, validating its accuracy and reliability for predicting
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the dynamic behaviour of porous FGM plates.

These findings provide valuable insights for the design and optimi-
zation of functionally graded porous plates in various engineering ap-
plications. The results can be used to tailor the dynamic properties of
FGM structures by selecting appropriate material gradation profiles,
porosity patterns, and geometric parameters. Future work could explore
the effects of different boundary conditions, thermal loads, and more
complex geometries on the dynamic behaviour of porous FGM plates.

This work was supported by the University research and training
projects (PRFU), code A01L02UN220120200004, which provide es-
sential support for doctoral training in higher education institutions
in Algeria.
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