Magnetic and Relaxation Phenomena in Film Si—TiN—Fe Heterostructures with Carbon Nanotubes

E. M. Rudenko$^{1}$, E. E. Zubov$^{2}$, M. A. Belogolovskii$^{3}$, I. V. Korotash$^{1}$, A. P. Shapovalov$^{1}$, D. Yu. Polotskiy$^{1}$, S. I. Bondarenko$^{2}$, Yu. A. Savina$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
$^{3}$Donetsk National University, 21 600-Richchya Str., 21021 Vinnytsia, Ukraine

Received: 24.09.2015. Download: PDF

Results of the measurements of the temperature and field dependences of the magnetic moment of the Si—TiN—Fe and Si—TiN—Fe/C heterostructures with iron nanoclusters in magnetic fields directed parallel and perpendicularly to the substrate plane are presented. In the temperature range from 5 to 300 K, a superparamagnetic behaviour of the susceptibility of a system with a sufficiently strong anisotropy is observed. At temperatures about 150 K, a qualitative change in magnetic properties of the structures is revealed and associated with the abrupt change in the paramagnetic temperature value. As found, the carbon contribution into the magnetic and relaxation characteristics of the studied heterostructures is crucial.

Key words: heterostructures, iron nanoclusters, carbon nanotubes, magnetic properties, relaxation.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i10/1369.html

DOI: https://doi.org/10.15407/mfint.37.10.1369

PACS: 75.20.-g, 75.30.Cr, 75.30.Gw, 75.50.Ss, 75.50.Tt, 75.70.Cn, 75.75.Cd

Citation: E. M. Rudenko, E. E. Zubov, M. A. Belogolovskii, I. V. Korotash, A. P. Shapovalov, D. Yu. Polotskiy, S. I. Bondarenko, and Yu. A. Savina, Magnetic and Relaxation Phenomena in Film Si—TiN—Fe Heterostructures with Carbon Nanotubes, Metallofiz. Noveishie Tekhnol., 37, No. 10: 1369—1376 (2015) (in Russian)


REFERENCES
  1. V. Lazarescu, Carbon Nanotube Electrodes. Dekker Encyclopedia Nanoscience and Nanotechnology. Vol. 1 (New York: CRC Press: 2009).
  2. E. M. Rudenko, I. V. Korotash, D. Y. Polotskiy, L. S. Osipov, M. V. Dyakin, T. A. Prikhna, and A. P. Shapovalov, Metallofiz. Noveishie Tekhnol., 37, No. 4: 499 (2015). Crossref
  3. L. E. Toth, Transition Metal Carbides and Nitrides (New York: Academic Press: 1971).
  4. E. Meilikhov and R. Farzetdinova, Ferromagnetism of Nanostructures Consisting of Ferromagnetic Granules with Dipolar Magnetic Interaction (Advanced in Nanoscale Magnetism) (Berlin–Heidelberg: Springer: 2009).
  5. C. P. Bean and J. D. Livingston, J. Appl. Phys., 30, No. 4: S120 (1959). Crossref
  6. R. M. Bozorth, J. Appl. Phys., 8, No. 9: 575 (1937). Crossref