Evolution of Structure and Properties of Differentially Quenched Rails During Long-Term Operation

V. E. Gromov$^{1}$, A. A. Yur’ev$^{1}$, Yu. F. Ivanov$^{2,3}$, S. V. Konovalov$^{4}$, O. A. Peregudov$^{5}$

$^{1}$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^{2}$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^{3}$Tomsk State University, 36 Lenina Ave., Tomsk, 634050, Russia
$^{4}$Academician S. P. Korolev Samara National Research University, 34 Moskovskoe shosse, Samara, Russia
$^{5}$Omsk State Technical University, 11 Mira Ave., Bldg. 8, 644050 Omsk, Russia

Received: 30.08.2017. Download: PDF

Using the methods of contemporary materials science, the regularities of formation are revealed and comparative analysis is carried out for the structure, phase composition, defect substructure, and properties formed at the distance of 0, 2, 10 mm from the tread surface along central axis and on fillet in the head of the 100-meter differentially quenched rails after passage of gross tonnage of 691.8 million tons. The structure of steel rails in initial state are represented by perlite grains of plate morphology, grains of structure-free ferrite (ferrite grains without carbide particles within the bulk) and ferrite grains with carbide particles (ferrite–carbide mixture grains) mainly in forms of short plates and globular particles. Long-term operation is accompanied by formation of gradient substructure manifesting itself in the natural change of the scalar and excess dislocations’ densities, amplitude of steel crystal lattice curvature–torsion, degree of deformation transformation of plate-perlite structure. As shown, the failure of cementite plates of perlite colonies passes mainly by means of two mechanisms: by cutting of gliding dislocations and because of carbon-atoms’ escape from cementite crystal lattice to dislocations. If, in the initial state, carbon atoms are mainly located within the cementite particles, then, after a long-term rail operation, they are distributed both in cementite particles and on defects of steel crystal structure (dislocations, boundaries of grains, and subgrains). The multiple-factor character of steel strengthening is revealed; it is determined by the total set of the structural components of rails’ metal. Quantitative characteristics of physical strengthening mechanisms are determined. As shown, the dislocation substructure formed during the rail operation makes main contribution into rails’ metal strengthening, regardless the analysed material volume (fillet or tread surface) and distance from working surface.

Key words: structure, phase composition, substructure of defects, carbon redistribution, strengthening mechanisms, rails, operation.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i12/1599.html

DOI: https://doi.org/10.15407/mfint.39.12.1599

PACS: 61.72.Lk, 62.20.M-, 62.20.Qp, 81.40.Ef, 81.40.Np, 81.40.Pq, 83.50.Uv

Citation: V. E. Gromov, A. A. Yur’ev, Yu. F. Ivanov, S. V. Konovalov, and O. A. Peregudov, Evolution of Structure and Properties of Differentially Quenched Rails During Long-Term Operation, Metallofiz. Noveishie Tekhnol., 39, No. 12: 1599—1646 (2017) (in Russian)


REFERENCES
  1. L. V. Korneva, G. N. Yunin, N. A. Kozyrev et al., Izv. Vuzov. Chernaya Metallurgiya, No. 12: 38 (2010) (in Russian).
  2. L. A. Smirnov, A. A. Deryabin, A. B. Dobuzhskaya et al., Byulleten 'Chernaya Metallurgiya', No. 6: 43 (2005) (in Russian).
  3. V. I. Semenov, Metally Evrazii, No. 5: 30 (2000) (in Russian).
  4. N. A. Kozyrev, V. V. Pavlov, L. A. Godik, and V. P. Dement'ev, Zheleznodorozhnye Rel'sy iz Elektrostali (Novokuznetsk: Evraz Holding: 2006) (in Russian).
  5. V. E. Gromov, A. B. Yuriev, K. V. Morozov, and Yu. F. Ivanov, Microstructure of Quenched Rails (Cambridge: CISP Ltd.: 2016).
  6. A. I. Borts, E. A. Shur, and V. M. Fedin, Uluchshenie Kachestva i Usloviy Ekspluatatsii Rel'sov i Rel'sovykh Skrepleniy': Sbornik Nauchn. Trudov (Ekaterinburg: OAO 'UIM': 2011), p. 94 (in Russian).
  7. V. E. Gromov, K. V. Morozov, O. A. Peregudov, Yu. F. Ivanov, and A. B. Yur'ev, Formirovanie Mikrostruktury Rel'sov pri Zakalke i Dlitel'noy Ekspluatatsii (Novokuznetsk: Izd-vo SibGIU: 2017) (in Russian).
  8. E. A. Shur, Povrezhdenie Rel'sov (Moscow: In-tekst: 2012) (in Russian).
  9. Yu. Ivanisenko and H. J. Fecht, Steel Tech., 3, No. 1: 19 (2008).
  10. Yu. Ivanisenko, I. Maclaren, X. Souvage, R. Z. Valiev, and H. J. Fecht, Acta Mater., 54: 1659 (2006). Crossref
  11. J.-L. Ning, E. Courtois-Manara, L. Kormanaeva, A. V. Ganeev, R. Z. Valiev, C. Kubel, and Yu. Ivanisenko, Mater. Sci. Eng. A, 581: 81 (2013). Crossref
  12. V. G. Gavriljuk, Mater. Sci. Eng. A, 345: 81 (2003). Crossref
  13. Y. J. Li, P. Chai, C. Bochers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Acta Mater., 59: 3965 (2011). Crossref
  14. V. G. Gavriljuk, Scr. Mater., 45: 1469 (2001). Crossref
  15. V. E. Gromov, Yu. F. Ivanov, O. A. Peregudov, K. V. Morozov, and A. P. Semin, Uspehi Fiziki Metallov, 17, No. 3: 253 (2016) (in Russian). Crossref
  16. V. E. Gromov, Yu. F. Ivanov, E. G. Belov, V. B. Kosterev, and D. A. Kosinov, Uspehi Fiziki Metallov, 17, No. 4: 303 (2016) (in Russian). Crossref
  17. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov, and S. V. Konovalov, Uspehi Fiziki Metallov, 18, No. 2: 111 (2017) (in Russian). Crossref
  18. Yu. F. Ivanov, V. E. Gromov, O. A. Peregudov, K. V. Morozov, and A. B. Jur'ev, Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya, 58, No. 4: 262 (2015) (in Russian).
  19. O. A. Peregudov, K. V. Morozov, V. E. Gromov, A. M. Glezer, and Yu. F. Ivanov, Deformatsiya i Razrushenie Materialov, No. 11: 34 (in Russian).
  20. V. E. Gromov, Yu. F. Ivanov, K. V. Morozov, O. A. Peregudov, K. V. Alsaraeva, N. A. Popova, and E. L. Nikonenko, Fundamental'nye Problemy Sovremennogo Materialovedeniya, 12, No. 2: 203 (2015) (in Russian).
  21. Yu. F. Ivanov, K. V. Morozov, O. A. Peregudov, V. E. Gromov, N. A. Popova, and E. L. Nikonenko, Problemy Chernoy Metallurgii i Materialovedeniya, No. 3: 59 (2015) (in Russian).
  22. V. E. Gromov, Yu. F. Ivanov, K. V. Morozov, O. A. Peregudov, N. A. Popova, and E. L. Nikonenko, Problemy Chernoy Metallurgii i Materialovedeniya, No. 4: 98 (2015) (in Russian).
  23. V. E. Gromov, O. A. Peregudov, Yu. F. Ivanov, K. V. Morozov, K. V. Alsaraeva, Voprosy Materialovedeniya, 3 (Iss. 83): 30 (2015) (in Russian).
  24. K. V. Morozov, V. E. Gromov, O. A. Peregudov, Yu. F. Ivanov, A. B. Jur'ev, and K. V. Aksjonova, Problemy Chernoy Metallurgii i Materialovedeniya, No. 1: 53 (2016) (in Russian).
  25. Yu. F. Ivanov, K. V. Morozov, O. A. Peregudov, and V. E. Gromov, Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya, 59, No. 8: 576 (2016) (in Russian).
  26. Yu. F. Ivanov, V. E. Gromov, A. M. Glezer, O. A. Peregudov, and K. V. Morozov, Izvestiya RAN. Seriya Fizicheskaya, 80, No. 12: 1682 (2016) (in Russian).
  27. V. E. Gromov, O. A. Peregudov, Y. F. Ivanov, K. V. Morozov, K. V. Alsaraeva, and O. A. Semina, J. Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 10, Iss. 1: 76 (2016). Crossref
  28. V. E. Gromov, Yu. F. Ivanov, O. A. Peregudov, K. V. Morozov, X. L. Wang, W. B. Dai, Yu. V. Ponomareva, and O. A. Semina, Mater. Electronics Eng., 2, No. 4: 1 (2015). Crossref
  29. Yu. F. Ivanov, V. E. Gromov, O. A. Peregudov, K. V. Morozov, and A. B. Yur'ev, Steel in Translation, 45, No. 4: 254 (2015). Crossref
  30. O. A. Peregudov, V. E. Gromov, Yu. F. Ivanov, K. V. Morozov, K. V. Alsaraeva, and O. A. Semina, AIP Conference Proceedings, 1683, No. 020179 (2015).
  31. V. E. Gromov, K. V. Morozov, A. B. Yur'ev, and O. A. Peregudov, Steel in Translation, 45, No. 10: 759 (2015). Crossref
  32. Yu. F. Ivanov, O. A. Peregudov, K. V. Morozov, V. E. Gromov, N. A. Popova, and E. N. Nikonenko, IOP Conference Series: Materials Science and Engineering, 112, No. 012038 (2016).
  33. V. E. Gromov, K. V. Morozov, Yu. F. Ivanov, K. V. Aksenova, O. A. Peregudov, and A. P. Semin, Diagnostics, Resource and Mechanics of Materials and Structures, No. 1: 38 (2016). Crossref
  34. V. E. Gromov, O. A. Peregudov, Y. F. Ivanov, A. M. Glezer, K. V. Morozov, K. V. Aksenova, and O. A. Semina, AIP Conference Proceedings, 1783: No. 020069 (2016).
  35. L. I. Tushinskiy, A. A. Bataev, and L. B. Tikhomirova, Struktura Perlita i Konstruktivnaya Prochnost' Stali (Novosibirsk: Nauka: 1993) (in Russian).
  36. Yu. F. Ivanov, V. E. Gromov, and E. N. Nikitina, Bainitic Constructional Steel: Structure and Hardening Mechanisms (Cambridge: CISP Ltd.: 2017).
  37. Yu. F. Ivanov, E. V. Kornet, Ye. V. Kozlov, and V. E. Gromov, Zakalennaya Konstruktsionnaya Stal': Struktura i Mekhanizmy Uprochneniya (Novokuznetsk: Izd-vo SibGIU: 2010) (in Russian).
  38. Kh. Vashul', Prakticheskaya Metallografiya. Metody Izgotovleniya Obraztsov (Moscow: Metallurgiya: 1988).
  39. V. S. Chernyavskiy, Stereologiya v Metallovedenii (Moscow: Metallurgiya: 1977) (in Russian).
  40. S. A. Saltykov, Stereometricheskaya Metallografiya (Moscow: Metallurgiya: 1970) (in Russian).
  41. J. M. Zuo and J. C. H. Spence, Advanced Transmission Electron Microscopy (New York: Springer: 2017). Crossref
  42. B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials (Berlin: Springer: 2013). Crossref
  43. J. Thomas and T. Gemming, Analytical Transmission Electron Microscopy (Dordrecht, Netherlands: Springer: 2014). Crossref
  44. F. R. Egerton, Physical Principles of Electron Microscopy (Basel: Springer International Publishing: 2016). Crossref
  45. C. S. S. R. Kumar, Transmission Electron Microscopy. Characterization of Nanomaterials (New York: Springer: 2014). Crossref
  46. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Berlin: Springer International Publishing: 2016). Crossref
  47. H. Schumann, Metallographie (Leipzig: VEB: 1964).
  48. A. A. Klopotov, Yu. A. Abzaev, A. I. Potekaev, O. G. Volokitin, and V. D. Klopotov, Fizicheskie Osnovy Rentgenostrukturnogo Issledovaniya Kristallicheskikh Materialov (Tomsk: Izd-vo Tomskogo Politekhnicheskogo Universiteta: 2013) (in Russian).
  49. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova et al., Eksperimentalnoe Issledovanie i Teoreticheskoe Opisanie Disklinatsiy (Leningrad: FTI: 1984), p. 161 (in Russian).
  50. N. A. Koneva, D. V. Lychagin, S. P. Zhukovskiy et al., Fiz. Met. Metalloved., 60, No. 1 (1985), p. 171 (in Russian).
  51. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Elektronnaya Mikroskopiya Tonkikh Kristallov (Moscow: Mir: 1968) (Russian translation).
  52. N. A. Koneva and Ye. V. Kozlov, Izvestiya Vuzov. Fizika, No. 8: 3 (in Russian).
  53. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova et al., Disklinatsii i Rotatsionnaya Deformatsiya Tverdykh Tel (Leningrad: Izd. FTI: 1988), p. 103 (in Russian).
  54. L. A. Teplyakova, L. N. Ignatenko, N. F. Kasatkina et al., Plasticheskaya Deformatsiya Splavov. Strukturno-Neodnorodnye Materialy (Tomsk: Izd. TGU: 1987), p. 26 (in Russian).
  55. Yu. F. Ivanov, V. E. Gromov, N. A. Popova, S. V. Konovalov, and N. A. Koneva, Strukturno-Fazovye Sostoyaniya i Mekhanizmy Uprochneniya Deformirovannoy Stali (Novokuznetsk: Poligrafist: 2016) (in Russian).
  56. I. I. Berkovich and D. G. Gromakovskiy, Tribologiya. Fizicheskie Osnovy, Mekhanika i Tekhnicheskie Prilozheniya: Uchebnik dlya VUZov (Ed. D. G. Gromakovskiy) (Samara: Samarskiy Gos. Tekhn. Un-t: 2000) (in Russian).
  57. L. M. Utevskiy, Difraktsionnaya Elektronnaya Mikroskopiya v Metallovedenii (Moscow: Metallurgiya: 1973) (in Russian).
  58. V. E. Gromov, Eh. V. Kozlov, V. I. Bazaykin, Yu. F. Ivanov et al., Fizika i Mekhanika Volocheniya i Ob'emnoy Shtampovki (Moscow: Nedra: 1997) (in Russian).
  59. G. Thomas and M. J. Goringe, Prosvechivayushchaya Elektronnaya Mikroskopiya Materialov (Moscow: Nauka: 1983) (Russian translation).
  60. N. A. Koneva, Ye. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, Sbornik Trudov Mezhdunarodnoy Konferentsii 'Novye Metody v Fizike i Mekhanike Deformiruemogo Tverdogo Tela' (Tomsk: TGU: 1990), p. 83 (in Russian).
  61. N. Koneva, S. Kiseleva, and N. Popova, Evolyutsiya Struktury i Vnutrennie Polya Napryazheniy. Austenitnaya Stal' (Saarbrucken: LAP LAMBERT Academic Publishing: 2017) (in Russian).
  62. V. G. Gavriljuk, D. S. Gertsriken, Yu. A. Polushkin, and V. M. Fal'chenko, Fiz. Met. Metalloved., 51, No. 1: 147 (1981) (in Russian).
  63. V. N. Gridnev and V. G. Gavriljuk, Metallofizika, 4, No. 3: 74 (1982) (in Russian).
  64. R. F. Meyl and T. Z. Hagel', Uspehi Fiziki Metallov (Moscow: Metallurgiya: 1960), p. 88 (in Russian).
  65. M. V. Belous and V. T. Cherepin, Fiz. Met. Metalloved., 14, No. 1: 48 (1962) (in Russian).
  66. V. G. Gavriljuk, Raspredelenie Ugleroda v Stali (Kiev: Naukova Dumka: 1987) (in Russian).
  67. O. M. Smirnov and V. A. Lazarev, Fiz. Met. Metalloved., 56, No. 1: 115 (in Russian).
  68. A. A. Bataev, Zakonomernosti Plasticheskoy Deformatsii Perlita i Razrabotka Effektivnykh Protsessov Uprochneniya Staley s Geterofaznoy Strukturoy (Thesis of Disser. for … Dr. Techn. Sci.) (Novosibirsk: 1995) (in Russian).
  69. Ye. V. Kozlov, D. M. Zakirov, N. A. Popova et al., Izv. Vuzov. Fizika, No. 3: 63 (1998) (in Russian).
  70. V. E. Gromov, V. A. Berdyshev, Ye. V. Kozlov, V. I. Petrov, V. D. Sarychev, V. V. Dorofeev, Yu. F. Ivanov, L. N. Ignatenko, N. A. Popova, and V. Ya. Cellermaer, Gradientnye Strukturno-Fazovye Sostoyaniya v Rel'sovoy Stali (Moscow: Nedra Communications LTD: 2000) (in Russian).
  71. A. M. Gur'ev, Ye. V. Kozlov, L. N. Ignatenko, and N. A. Popova, Fizicheskie Osnovy Termotsiklicheskogo Borirovaniya Staley (Barnaul: AltGTU: 2000) (in Russian).
  72. N. A. Popova, S. G. Zhuleykin, L. N. Ignatenko et al., Vestnik Tambovskogo Universiteta, 8, No. 4: 589 (2003) (in Russian).
  73. V. V. Veter, N. A. Popova, L. N. Ignatenko, and Eh. V. Kozlov, Izv. Vuzov. Chernaya Metallurgiya, No. 10: 44 (1994) (in Russian).
  74. V. V. Veter, S. G. Zhuleykin, L. N. Ignatenko, V. V. Kovalenko, V. E. Gromov, N. A. Popova, and Eh. V. Kozlov, Izv. AN. Seriya Fizicheskaya, 67, No. 10: 1375 (2003) (in Russian).
  75. V. G. Kurdyumov, L. M. Utevskiy, and R. I. Entin, Prevrashcheniya v Zheleze i Stali (Moscow: Nauka: 1977) (in Russian).
  76. M. V. Belous, Yu. N. Moskalenok, V. T. Cherepin, Yu. P. Sheyko, and S. Meshashti, Fiz. Met. Metalloved., 80, Iss. 3: 103 (1995) (in Russian).
  77. M. V. Belous, V. B. Novozhilov, L. S. Shatalova, and Yu. P. Sheyko, Fiz. Met. Metalloved., 79, Iss. 4: 128 (in Russian).
  78. V. I. Izotov and A. G. Kozlova, Fiz. Met. Metalloved., 80, Iss. 1: 97 (1995) (in Russian).
  79. V. I. Izotov and G. A. Filippov, Fiz. Met. Metalloved., 87, Iss. 4: 72 (1999) (in Russian).
  80. G. R. Speich, Trans. Met. Soc. AIME, 245, No. 10: 2553 (1969).
  81. D. Kalich and E. M. Roberts, Met. Trans., 2, No. 10: 2783 (1971). Crossref
  82. E. J. Fasiska and H. Wagenblat, Trans. Met. Soc. AIME, 239, No. 11: 1818 (1967).
  83. N. Ridley, H. Stuart, and L. Zwell, Trans. Met. Soc. AIME, 246, No. 8: 1834 (1969).
  84. S. I. Veselov and E. Z. Spektor, Fiz. Met. Metalloved., 4, No. 5: 895 (1972) (in Russian).
  85. Yu. M. Lakhtin, Metallovedenie i Termicheskaya Obrabotka Metallov (Moscow: Metallurgiya: 1977) (in Russian).
  86. G. Thomas and M. Sarikaya, Proc. Itn. Conf. Solid-Solid Phases Transform. (Pittsburgh, PA, 10–14 Aug., 1981) (Warrendale: 1982), p. 999.
  87. M. Sarikaya, G. Thomas, J. W. Steeds et al., Proc. Itn. Conf. Solid-Solid Phases Transform. (Pittsburgh, PA, 10–14 Aug., 1981) (Warrendale: 1982), p. 1421.
  88. Yu. F. Ivanov, N. A. Popova, S. A. Gladyshev, and Eh. V. Kozlov, Vzaimodeystvie Defektov Kristallicheskoy Reshetki i Svoystva: Sbornik Trudov (Tula: TulPI: 1986), p. 100 (in Russian).
  89. A. A. Klopotov, Yu. A. Abzaev, A. I. Potekaev, O. G. Volokitin, and V. D. Klopotov, Fizicheskie Osnovy Rentgenostrukturnogo Issledovaniya Kristallicheskikh Materialov (Tomsk: Izd-vo Tomskogo Politehnicheskogo Universiteta: 2013) (in Russian).
  90. A. E. Vol, Stroenie i Svoystva Dvoynykh Metallicheskih Sistem (Moscow: Gos. Izd. Fiziko-Matematicheskoy Literatury: 1962), vol. 2 (in Russian).
  91. M. I. Gol'dshteyn and B. M. Farber, Dispersionnoe Uprochnenie Stali (Moscow: Metallurgiya: 1979) (in Russian).
  92. F. B. Pikering, Fizicheskoe Metallovedenie i Obrabotka Staley (Moscow: Metallurgiya: 1982) (in Russian).
  93. M. A. Shtremel', Prochnost' Splavov. Ch. II. Deformatsiya: Uchebnik dlya Vuzov (Moscow: MISiS: 1997) (in Russian).
  94. V. E. Gromov, O. A. Peregudov, Yu. F. Ivanov, S. V. Konovalov, and A. A. Yur'ev, Evolyutsiya Strukturno-Fazovykh Sostoyaniy Metalla Rel'sov pri Dlitel'noy Ekspluatatsii (Novosibirsk: Izd-vo SO RAN: 2017) (in Russian).
  95. D. McLean, Mekhanicheskie Svoystva Metallov (Moscow: Metallurgiya: 1965) (Russian translation).
  96. A. A. Predvoditelev, Problemy Sovremennoy Kristallografii (Moscow: Nauka: 1975), p. 262 (in Russian).
  97. I. D. Embyri, Strengthening Method in Crystals (Applied Science Publishers: 1971), p. 331.
  98. N. A. Koneva, Ye. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, Sbornik Trudov Mezhdunarodnoy Konferentsii 'Novye Metody v Fizike i Mekhanike Deformiruemogo Tverdogo Tela' (Tomsk: TGU: 1990), p. 83 (in Russian).
  99. N. F. Mott and F. R. N. Nabarro, Proc. Phys. Soc., 52, No. 1: 86 (1940). Crossref
  100. V. E. Gromov, A. A. Yur'ev, K. V. Morozov, Yu. F. Ivanov, S. V. Konovalov, O. A. Peregudov, and A. M. Glezer, Fundamental'nye Problemy Sovremennogo Materialovedeniya, 14, No. 2: 267 (2017) (in Russian).