Simplified Modelling of Tandem Cold Rolling

K. Slimani$^{1,2}$, M. Zaaf$^{1}$, H. Bendjama$^{2}$

$^{1}$Badji Mokhtar University, B.P. 12, CP 23000 Annaba, Algeria
$^{2}$Research Center in Industrial Technologies CRTI, P.O.Box 64, Cheraga 16014 Algiers, Algeria

Received: 12.02.2018; final version - 09.10.2018. Download: PDF

In this paper, a calculation technique for solving the problem of regulating interstand tension in a tandem cold rolling is proposed. Based on the slices’ method, the proposed technique develops a computational model for a single stand, and then generalizes it for five stands. The effectiveness of this technique is evaluated using experimental data acquired from tandem rolling mill of IMETAL steel complex of El-Hadjar-Algeria. By taking into account the elasticity of the rolls and using Newton’s method, the developed model can be used to calculate successfully the tensions’ correction of the five stands. Compared with the LAM3 software, the obtained results indicated that the proposed technique is effective and can be used to produce better performance of tandem cold rolling.

Key words: modelling, tandem cold rolling, slices’ method, elasticity, Newton’s method.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i11/1509.html

DOI: https://doi.org/10.15407/mfint.40.11.1509

PACS: 06.60.Vz, 07.50.Tp, 81.20.Hy, 81.40.Ef, 81.40.Lm, 81.70.Bt, 83.50.Uv

Citation: K. Slimani, M. Zaaf, and H. Bendjama, Simplified Modelling of Tandem Cold Rolling, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1509—1520 (2018)


REFERENCES
  1. C. F. Bryant, Automation of Tandem Mills (London, U.K.: British Iron and Steel Institute: 1973).
  2. A. J. Carlton and R. G. Conway, Iron Steel Eng., 69, No. 6: 17 (1992).
  3. P. Duval, J. C. Parks, and G. Fellus, Iron Steel Eng., 68, No. 11: 46 (1991).
  4. E. J. M. Geddes, Tandem Cold Rolling and Robust Multivariable Control (Ph.D. Disser.) (Control Syst. Res., Dept. Elect. Eng., Univ. Leicester, U.K.: 1998).
  5. I. Hoshino et al., Automatica, 24, No. 6: 741 (1988). Crossref
  6. Von Kármán and T. Beitragzur, Z. Angew. Math. Mech., 5: 139 (1925).
  7. E. Orowan, Proc. Instn. Mech. Eng., 150: 140 (1943). Crossref
  8. K. Mori and K. Osakada, Int. J. Mech. Sci., 26, Nos. 9–10: 515 (1984). Crossref
  9. H. J. Huisman and J. Huétink, J. Mech. Working Technol., 11: 333 (1985). Crossref
  10. J.-L. Chenot, P. Montmitonnet, A. Bern, and C. Bertrand-Corsini, Comput. Meth. Appl. Mech. Eng., 92, No. 2: 245 (1991). Crossref
  11. P. Montmitonnet, Laminage à Froid: Modélisation M616 (Paris: 2000).
  12. P. Montmitonnet, Laminage-Analyse Thermomécanique 2D et Application aux Produit Plats M3066V2 (Juin, 2016).
  13. Huy Le Dang, Modélisation Simplifiée des Processus de Laminage (2014).
  14. E. Orowan, Proc. Instn. Mech. Eng., 150: 140 (1943). Crossref
  15. D. R. Bland and H. Ford, J. Iron Steel Inst., 171: 245 (1952).
  16. P. Cosse and M. Economopoulos, CNRM, 17: 15 (1968).
  17. D. Jortner, J. F. Osterle, and C. F. Zorowski, Int. J. Mech. Sci., 2: 179 (1960). Crossref
  18. A. Hacquin, P. Montmitonnet, and J.-Ph. Guillerault, Eur. J. Mech. A (Solids), 1: 79 (1998). Crossref