Indium Deposited Nanosystem Formation on InSe (0001) Surface Applied as Template

P. V. Galiy$^{1}$, T. M. Nenchuk$^{1}$, A. Ciszewski$^{2}$, P. Mazur$^{2}$, Ya. M. Buzhuk$^{1}$, Z. M. Lubun$^{1}$, O. R. Dveriy$^{3}$

$^{1}$Ivan Franko National University of Lviv, 1 Universytets’ka Str., UA-79000 Lviv, Ukraine
$^{2}$University of Wrocław, Institute of Experimental Physics, 9 Maxa Borna Plac, 50—204 Wrocław, Poland
$^{3}$Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., 79026 Lviv, Ukraine

Received: 10.06.2019. Download: PDF

Surface of two-dimensional InSe layered semiconductor crystal is applied as template for directed assembly of indium nanostructures. The study of In/(0001)InSe surface nanosystem formation is conducted using scanning tunnelling microscopy data. Indium is thermally deposited on structurally perfect InSe crystal cleavages obtained in ultra-high vacuum experimental conditions. It is able to achieve the formation of nanosized triangular shaped structures in a result of the solid state dewetting process by surface heating above the indium melting point. Moreover, the spatial arrangement of such nanostructures is powered by hexagonal lattice symmetry of InSe surface.

Key words: scanning tunnelling microscopy, low energy electron diffraction, layered crystals, indium selenide, nanostructures template directed assembly, hetero-nanostructures.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i10/1395.html

DOI: https://doi.org/10.15407/mfint.41.10.1395

PACS: 68.35.Ct, 68.37.Ef, 68.47.De, 68.47.Fg, 68.65.-k, 73.20.At, 81.16.Dn

Citation: P. V. Galiy, T. M. Nenchuk, A. Ciszewski, P. Mazur, Ya. M. Buzhuk, Z. M. Lubun, and O. R. Dveriy, Indium Deposited Nanosystem Formation on InSe (0001) Surface Applied as Template, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1395—1405 (2019) (in Ukrainian)


REFERENCES
  1. L. Yu. Kharkhalis, K. E. Glukhov, and M. Sznajder, Acta Phys. Polonica A, 126 (5): 1146 (2014). Crossref
  2. A. Politano, D. Campi, M. Cattelan, I. Ben Amara, S. Jaziri, A. Mazzotti, A. Barinov, B. Gürbulak, S. Duman, S. Agnoli, L. S. Caputi, G. Granozzi, and A. Cupolillo, Scientific Reports, 7: 3445 (11pp) (2017). Crossref
  3. D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal'ko, A. K. Geim, and Y. Cao, Nat. Nanotechnol., 12: 223 (2017). Crossref
  4. P. V. Galiy, T. M. Nenchuk, A. Ciszewski, P. Mazur, I. R. Yarovets', and O. R. Dveriy, Metallofiz. Noveishie Tekhnol., 39, No. 7: 995 (2017). Crossref
  5. T. Komesu, H. Yi, S. Gilbert, K. Fukutani, A. J. Yost, A. Lipatov, A. Sinitskii, Ya.B. Losovyj, P. Galiy, J. Avila, C. Chen, M. C. Asensio, and P. A. Dowben, Symp. F: Surfaces and Interfaces in Multilayered Thin Films and Nano-Composites (E-MRS 2018) (September 17-19, 2018, Warsaw), p. F.5.1.
  6. J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature, 459: 965 (2009). Crossref
  7. R. A. Hughes, E. Menumerov, and S. Neretina, Nanotechnology, 28: 282002 (24pp) (2017). Crossref
  8. P. Galiy, P. Mazur, A. Ciszewski, T. Nenchuk, and I. Yarovets, Eur. Phys. J. Plus, 134: 70 (2019). Crossref
  9. P. V. Galiy, T. M. Nenchuk, P. Mazur, A. Ciszewski, and I. R. Yarovets, Molecular Crystals and Liquid Crystals, 674, Iss. 1: 11 (2018). Crossref
  10. K. Imai, K. Suzuki, T. Haga, Y. Hasegawa, and Y. Abe, J. Crystal Growth, 54, No. 3: 501 (1981). Crossref
  11. D. W. Boukhvalov, B. Gürbulak, S. Duman, L. Wang, A. Politano, L. S. Caputi, G. Chiarello, and A. Cupolillo, Nanomaterials (Basel), 7, No. 11: E372 (2017). Crossref
  12. P. V. Galiy, T. M. Nenchuk, and J. M. Stakhira, J. Phys. D: Appl. Phys., 34, No. 1: 18 (2001). Crossref
  13. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 78: 013705 (2007). Crossref
  14. D. M. Bercha, K. Z. Rushchanskii, L. Yu. Kharkhalis, and M. Sznajder, Condensed Matter Physics, 3, No. 4: 749 (2000). Crossref
  15. V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Berlin: Springer-Verlag Berlin Heidelberg: 2014). Crossref