Deformation Behaviour of Cu–Al–Mn Alloys under the Effect of Temperature and Mechanical Stresses

A. N. Titenko$^{1}$, L. D. Demchenko$^{2}$, A. Ye. Perekos$^{3}$, M. B. Babanli$^{4}$, A. Yu. Gerasimov$^{3}$, Ya. V. Korenivska$^{1}$

$^{1}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{4}$Azerbaijan State Oil and Industrial University, 20 Azadliq, AZ-1010 Baku, Azerbaijan

Received: 15.07.2019. Download: PDF

The subject of research in this work is the deformation effects of aged Cu–Al–Mn alloys. According to the data of uniaxial tension tests, the phase equilibrium diagrams of austenite and martensite phases are constructed. The deformation behaviour under the action of temperature and mechanical stresses is estimated, the values of critical strain for the formation of strain-induced martensite are obtained, and the factors having an effect on the degree of superelastic recovery are elucidated. The linear thermal expansion coefficients of high- and low-temperature phases and the magnitude of volume effect of martensitic transformation are determined from the change in the linear dimensions of the samples. Magnetic properties of the alloys and the parameters affecting them are investigated. According to the data of magnetic analysis, the calculations of both magnetic parameters of the alloys and size effects of particles, which determine the induced deformation effects under the influence of temperature and mechanical stress, is made.

Key words: Cu–Al–Mn alloys, aging, martensite, austenite, deformation, temperature, mechanical stress.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i04/0531.html

DOI: https://doi.org/10.15407/mfint.42.04.0531

PACS: 62.20.de,62.20.fg,62.23.St,64.70.Nd,65.40.De,81.30.Kf,81.40.Jj

Citation: A. N. Titenko, L. D. Demchenko, A. Ye. Perekos, M. B. Babanli, A. Yu. Gerasimov, and Ya. V. Korenivska, Deformation Behaviour of Cu–Al–Mn Alloys under the Effect of Temperature and Mechanical Stresses, Metallofiz. Noveishie Tekhnol., 42, No. 4: 531—540 (2020) (in Russian)


REFERENCES
  1. G. V. Kurdyumov and L. G. Handros, Dokl. AN SSSR, 66, No. 26: 211 (1949). Crossref
  2. H. Warlimont and L. Delay, Martensitic Transformations in Copper-, Silver-, and Gold-Based Alloys (Oxford: Pergamon: 1974).
  3. R. Kainuma, S. Takahashi, and K. Ishida, Metall. Mater. Trans. A, 27, Iss. 8: 2187 (1996). Crossref
  4. Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, Mater. Sci. Technol., 24, Iss. 8: 896 (2008). Crossref
  5. I. R. Bubley, Yu. N. Koval, and P. V. Titov, Metallofiz. Noveishie Tekhnol., 18, No. 4: 20 (1996).
  6. T. Omori, Y. Sutou, R. Kainuma, and K. Isida, Development of Cu-Al-Mn-based Shape Memory Alloys (Ed. J.-M. Welter) (Wiley-VCH: Weinheim: 2006), ch. 24. Crossref
  7. Sh. Xu, H. Huang, J. Xie, Yu. Kimura, X. Xu, T. Omori, and R. Kainuma, Metals, 7: 141 (2017). Crossref
  8. I. Altenberger, S. Heinrichs, and H.-A. Kuhn, Conf. EMC 2017, GDMB-Eur. Metall. Conf. (June 25-28, 2017) (Leipzig, Germany: 2017).
  9. M. Bocciolone, M. Carnevale, A. Collina, N. Lecis, A. Lo Conte, B. Previtali, C. A. Biffi, P. Bassani, and A. Tuissi, Smart Mater. Res., 2012: 797319 (2012). Crossref
  10. V. V. Kokorin, Martensitnye Prevrashcheniya v Neodnorodnyhk Tverdykh Rastvorakh (Kyiv: Naukova Dumka: 1987) (in Russian).
  11. A. N. Titenko, L. D. Demchenko, A. O. Perekos, and O. Yu. Gerasimov, Nanoscale Res. Lett., 12(1) (2017). Crossref
  12. A. M. Titenko, A. O. Perekos, and L. D. Demchenko, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 1: 123 (2014) (in Ukrainian).
  13. Y. Sutou, T. Omori, J. J. Wang, R. Kainuma, and K. Ishida, J. Mater. Sci. Eng. A, 378, Iss. 1-2: 278 (2004). Crossref
  14. L. E. Kozlova and A. N. Titenko, Mater. Sci. Eng. A, 438-440: 738 (2006). Crossref
  15. Sh. Xu, H.-Y. Huang, J. Xie, S. Takekawa, X. Xu, T. Omori, and R. Kainuma, APL Mater., 4, Iss. 10: 106106 (2016). Crossref
  16. Y. Sutou, T. Omori, J. J. Wang, R. Kainuma, and K. Ishida, J. Phys. IV France, 112: 511 (2003). Crossref
  17. Y. Sutou, T. Omori, A. Furukawa, Y. Takahashi, R. Kainuma, K. Yamauchi, S. Yamashita, and K. Ishida, J. Biomed. Mater. Res., 69B, Iss. 1: 64 (2004). Crossref
  18. B. Michelutti, R. Perrier de la Bathie, E. du Tremolet de Lacheisserie, and A. Waintal, Solid State Commun., 25, Iss. 3: 163 (1978). Crossref
  19. G. A. Takzei, I. Mirebeau, L. P. Gun'ko, I. I. Sych, O. B. Surzhenko, S. V. Cherepov, and Yu. N. Troschenkov, J. Magn. Magn. Mat., 202, Iss. 2-3: 376 (1999). Crossref
  20. M. Hudak, J. Tothova, and O. Hudak, arXiv:1804.04196 [cond-mat.mtrl-sci] (2018). Crossref
  21. Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, Acta Mater. 2013, 61, Iss. 10: 3842. Crossref