Electrical and Mechanical Properties of Composites Ti–Carbon Nanotubes

H. Yu. Mykhailova$^{1}$, E. G. Len$^{1,2}$, I. Ye. Galstyan$^{1}$, E. A. Tsapko$^{1}$, O. Yu. Gerasymov$^{1}$, V. I. Patoka$^{1}$, I. M. Sidorchenko$^{1}$, M. M. Yakymchuk$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 24.01.2020. Download: PDF

The mechanical and electrical properties of Ti–CNT powder nanosystems obtained by mechanical mixing are studied depending on the concentration of multilayered carbon nanotubes (CNTs) and the degree of compression of the investigated samples. As shown an analysis of these properties, their qualitative and quantitative changes in the concentration range of 1.5–33% wt. CNTs are determined. These changes indicate the formation of composites. Thus, the electrical conductivity of composites differs significantly both from the corresponding values for the initial components and from the average values expected for a classical mixture. This effect is determined by a transfer of free electrons from the metal to the CNTs, by a comparable number of electrical contacts between the composite’s components of different (metal–CNT) and the same (mainly CNT–CNTs) nature, and competition between the numbers of tunnelling and ohmic contacts. As shown, the pretreatment with compression makes it possible to increase the maximum value of the electrical conductivity of the composite by a factor of $\cong$1.5 due to adhesion at high pressures of CNTs and metal particles. This leads after subsequent milling and loading of the powder material to a decrease in amount of direct contacts between metal particles and to an increase in number of contacts between CNTs with an increased concentration of free charge carriers. Such nanostructured materials are promising for creating electrodes for ‘cold’ photothermoelectrical energy converters.

Key words: multilayered carbon nanotubes, titanium, mechanical properties, electrical conductivity, pressure treatment, mechanical mixture, composite.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i04/0575.html

DOI: https://doi.org/10.15407/mfint.42.04.0575

PACS: 61.48.De, 62.23.Pq, 72.80.Tm, 72.80.Vp, 73.63.Fg, 81.07.De

Citation: H. Yu. Mykhailova, E. G. Len, I. Ye. Galstyan, E. A. Tsapko, O. Yu. Gerasymov, V. I. Patoka, I. M. Sidorchenko, and M. M. Yakymchuk, Electrical and Mechanical Properties of Composites Ti–Carbon Nanotubes, Metallofiz. Noveishie Tekhnol., 42, No. 4: 575—593 (2020) (in Ukrainian)


REFERENCES
  1. Zh. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, Nature, 402: 273 (1999). Crossref
  2. S. A. Curran, J. Talla, S. Dias, D. Zhang, and D. Carroll, J. Appl. Phys., 105: 073711 (2009). Crossref
  3. K. Ahmad, W. Pan, and S. L. Shi, Appl. Phys. Lett., 89: 133122 (2006). Crossref
  4. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44: 5893 (2003). Crossref
  5. M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Adv. Mater., 17: 1186 (2005). Crossref
  6. E. Kymakis, I. Alexandou, and G. A. Amaratunga, Synthetic Metals, 127: 59 (2002). Crossref
  7. M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Appl. Phys. Lett., 87: 161909 (2005). Crossref
  8. I. Balberg, Carbon, 40: 139 (2002). Crossref
  9. M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev, Phys. Rev. B, 71: 104201 (2005). Crossref
  10. I. Balberg, Phys. Rev. Lett., 59: 1305 (1987). Crossref
  11. Ch. Li, E. T. Thostenson, and T.-W. Chou, Appl. Phys. Lett., 91: 223114 (2007). Crossref
  12. J. G. Simmons, J. Appl. Phys., 34: 1793 (1963). Crossref
  13. Q. Li, Ch. A. Rottmair, and R. F. Singer, Composites Sci. Technol., 70: 2242 (2010). Crossref
  14. E. V. Anufrieva and M. G. Krakovyak, Fizika Tverdogo Tela, 44, No. 3: 443 (2002) (in Russian). Crossref
  15. A. V. Eleckii and B. M. Smirnov, Uspekhi Fizicheskikh Nauk, 163, No. 2: 33 (1993) (in Russian). Crossref
  16. J. Keith Nelson, Dielectric Polymer Nanocomposites (Springer Science & Business Media: 2009). Crossref
  17. Polipropilen (Eds. V. Pilipskogo and I. Yarceva) (Moscow: Khimiya: 1967) (in Russian).
  18. R. H. Hisamov, K. S. Nazarov, L. R. Zubairov, A. A. Nazarov, R. R. Mulyukov et al., Fizika Tverdogo Tela, 57, No. 1: 37 (2015) (in Russian). Crossref
  19. R. M. Sundaram, A. Sekiguchi, M. Sekiya, T. Yamada, and K. Hata, R. Soc. Open Sci., 5, Iss. 11: 180814 (2018). Crossref
  20. S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotubes Reinforced Metal Matrix Composites (Boca Raton: CRC Press: 2011).
  21. A. Bachmaier and R. Pippan, International Mater. Rev., 53, No. 1: 41 (2013). Crossref
  22. T. Yildirim and S. Ciraci, Phys. Rev. Lett., 94: 175501 (2005). Crossref
  23. E. Durgun, Phys. Rev. Lett., 97: 226102 (2006). Crossref
  24. J. Kong, Science, 287: 622 (2006). Crossref
  25. P. G. Collins, Science, 287: 1801 (2000). Crossref
  26. Guo‐ran Li, Feng Wang, Qi‐wei Jiang, Xue‐ping Gao, and Pan‐wen Shen, Carbon, Advantante Chemie, 49: 3653 (2010). Crossref
  27. Kh. S. Munir, P. Kingshott, and C. Wen, Critical Rev. Solid State Mater. Sci., 40: 38 (2015). Crossref
  28. S. Sharma, P. Kumar, and R. Chandra, J. Composite Mater., 52, Iss. 29: 4117 (2018). Crossref
  29. M. M. Nishchenko, G. Yu. Mihaylova, E. I. Arkhipov, V. Yu. Koda, G. P. Prikhod’ko, and Yu. I. Sementsov, Metallofiz. Noveishie Tekhnol., 31, No. 4: 437 (2009) (in Russian).
  30. G. Yu. Mikhailova M. M. Nishchenko V. N. Pimenov E. E. Starostin, and V. I. Tovtin, Inorganic Mater.: Appl. Res., 10, No. 5: 1052 (2019). Crossref
  31. M. M. Nishchenko, H. Yu. Myhailova, B. V. Kovalchuk, I. M. Sydorchenko, V. V. Anikeev, N. Ya. Shevchenko, V. M. Poroshyn, and G. P. Pryhodko, Metallofiz. Noveishie Tekhnol., 40, No. 2: 169 (2018) (in Russian). Crossref
  32. S. Zhang, Ch. Ji, Zh. Bian, R. Liu, X. Xia, D. Yun, L. Zhang, Ch. Huang, and A. Cao, Nano Lett., 11: 3383 (2011). Crossref
  33. M. M. Nishchenko, H. Yu. Mykhailova, and M. Ya. Shevchenko, Patent na Korysnu Model, No. 94148; Zayav. 16.06.2014 (Publ. 27.10.2014, Bull. 20).
  34. D. V. Sokolov, N. A. Davletkil'deev, and I. A. Lobov, Omskiy Nauchnyy Vestnik, 159, No. 3: 114 (2018) (in Russian). Crossref
  35. E. E. Privalov, Osnovy Elektromaterialovedeniya: Uchebnoe Posobie (Moscow; Berlin: Direkt-Media: 2017) (in Russian).