Influence of Annealing in Vacuum on Dispersion of Thin Double Nickel–Copper Films Deposited onto Oxide Ceramic Materials
I. I. Gab, T. V. Stetsyuk, B. D. Kostyuk
I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
Received: 02.10.2019; final version - 12.05.2020. Download: PDF
The kinetics dispersion of thin nickel–copper double films deposited onto leucosapphire, alumina and zirconia ceramics and annealed in vacuum at temperatures up to 1100°C at different exposure intervals at each temperature (from 5 to 20 min) is studied. The double films consisted of two layers: the first metallized layer is a nickel nanofilm 150 nm thickness deposited onto oxide surface and the second layer 1.5 $\mu$m thickness copper layer is deposited onto it, which was supposed to serve as a solder when the metallized oxide samples are joined together. It is established that these films remain sufficiently dense when they are briefly heated to 1050°C and after annealing at 1100°C they decompose immediately into individual droplets that cover more than half of the area of oxide substrates. The kinetic curves of films decomposition on all oxides are constructed depending on the annealing temperature and the exposure time at each temperature, and two technologies for joining these metallized oxides by pressure welding and soldering have been developed.
Key words: kinetics of disintegration, nickel–copper double-film, annealing, oxide material.
URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1093.html
DOI: https://doi.org/10.15407/mfint.42.08.1093
PACS: 68.35.bd, 68.37.Hk, 68.47.De, 68.55.-a, 81.20.Vj, 81.40.Ef
Citation: I. I. Gab, T. V. Stetsyuk, and B. D. Kostyuk, Influence of Annealing in Vacuum on Dispersion of Thin Double Nickel–Copper Films Deposited onto Oxide Ceramic Materials, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1093—1105 (2020) (in Ukrainian)