Influence of Annealing in Vacuum on Dispersion of Thin Double Nickel–Copper Films Deposited onto Oxide Ceramic Materials

I. I. Gab, T. V. Stetsyuk, B. D. Kostyuk

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 02.10.2019; final version - 12.05.2020. Download: PDF

The kinetics dispersion of thin nickel–copper double films deposited onto leucosapphire, alumina and zirconia ceramics and annealed in vacuum at temperatures up to 1100°C at different exposure intervals at each temperature (from 5 to 20 min) is studied. The double films consisted of two layers: the first metallized layer is a nickel nanofilm 150 nm thickness deposited onto oxide surface and the second layer 1.5 $\mu$m thickness copper layer is deposited onto it, which was supposed to serve as a solder when the metallized oxide samples are joined together. It is established that these films remain sufficiently dense when they are briefly heated to 1050°C and after annealing at 1100°C they decompose immediately into individual droplets that cover more than half of the area of oxide substrates. The kinetic curves of films decomposition on all oxides are constructed depending on the annealing temperature and the exposure time at each temperature, and two technologies for joining these metallized oxides by pressure welding and soldering have been developed.

Key words: kinetics of disintegration, nickel–copper double-film, annealing, oxide material.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1093.html

DOI: https://doi.org/10.15407/mfint.42.08.1093

PACS: 68.35.bd, 68.37.Hk, 68.47.De, 68.55.-a, 81.20.Vj, 81.40.Ef

Citation: I. I. Gab, T. V. Stetsyuk, and B. D. Kostyuk, Influence of Annealing in Vacuum on Dispersion of Thin Double Nickel–Copper Films Deposited onto Oxide Ceramic Materials, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1093—1105 (2020) (in Ukrainian)


REFERENCES
  1. M. A. Rubashev, G. I. Berdov, V. N. Gavrilov, Termostoykie Dielektriki i Ikh Spai s Metallami v Novoy Tekhnike (Moscow: Atomizdat: 1980) (in Russian).
  2. Yu. V. Naidich, Kontaktnye Yavleniya v Metallicheskikh Rasplavakh (Kyiv: Naukova Dymka: 1972) (in Russian).
  3. N. F. Lashko and S. V. Lashko, Payka Metallov (Moscow: Mashinostroenie: 1967) (in Russian).
  4. N. F. Kazakov, Diffuzionnaya Svarka Materialov (Moscow: Mashinostroenie: 1976) (in Russian).
  5. V. A. Bachin, Teoriya, Tekhnologiya i Oborudovanie Diffuzionnoy Svarki (Moscow: Mashinostroenie: 1991) (in Russian).
  6. I. I. Metelkin, M. A. Pavlov, and N. V. Pozdeeva, Svarka Keramiki s Metallami (Moscow: Metallurgiya: 1977) (in Russian).
  7. V. R. Yevdokimov, S. L. Kashtanov, L. N. Lado, and S. N. Shubin, Svarochnoe Proizvodstvo, 8: 2 (1995) (in Russian).
  8. M. Sirakane, M. Nakakhasi, and T. Yamadzaki, Method of Joining Aluminum Oxide and Metal, Application 60-239373 for an Invention from 15.05.1984, Japan (Publ. 28.11.85).
  9. M. Namura, Y. Ito, and K. Kaneya, Method of Joining metal and Ceramics, Application 380163 for an Invention from 21.08.1989, Japan (Publ. 04.04.91).
  10. Y. Naidich, Industrial Ceramics, 19, No. 3: 162 (1999).
  11. Yu. V. Naidich, I. I. Gab, B. D. Kostyuk, T. V. Stetsyuk, D. I. Kurkova, and S. V. Dukarov, Dopovidi Akademiyi Nauk, 35: 97 (2007) (in Russian).
  12. Yu. V. Naidich, I. I. Gab, B. D. Kostyuk, T. V. Stetsyuk, D. I. Kurkova, and S. V. Dukarov, Tekhnika Mashinostroeniya, 1: 29 (2006) (in Russian).
  13. V. M. Yakovich and V. M. Komarovskaya, Materialy XII Respublikanskoy Nauchno-Prakticheskoy Konferentsii Molodykh Uchenykh i Studentov BNTU 'Inzhenerno-Pedagogicheskoe Obrazovanie v XXI Veke' (May 19-20, 2016) (Minsk: 2016), ch. 2, p. 215 (in Russian).
  14. A. A. Andreyev, G. I. Kostyuk, and N. A. Minaev, Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 89, No. 2: 28 (2012) (in Russian).
  15. S. V. Zaytsev, Yu. V. Gerasimenko, M. V. Lobanov, and A. M. Khoviv, Kondensirovannye Sredy i Mezhfaznye Granitsy, 16, No. 2: 153 (2014) (in Russian).
  16. T. A. Lobanova, A. O. Volkhonskiy, and I. V. Blinkov, Innovatika i Ekspertiza, 10, No. 1: 76 (2013) (in Russian).
  17. D. V. Velikodnyy, C. I. Protsenko, and I. Ye. Protsenko, Fizicheskaya Inzheneriya Poverkhnosti, 6, Nos. 1-2: 37 (2008) (in Russian).
  18. M. Naveed, A. Obrosov, and S. Weiß, Conf. Papers in Sci., 2015, Article ID 873543 (2015). Crossref
  19. S. Metfessel, Tonkie Plenki, Ikh Izgotovlenie i Izmerenie (Moscow-Leningrad: Gosenergoizdat: 1963) (in Russian).
  20. G. Khaas and R. E. Tun, Fizika Tonkikh Plenok (Moscow: Mir: 1968) (in Russian).