Features of Crystallization, Formation of Phase Composition and Morphology of Al–7Si–4Fe Alloy Structural Units under Magnetic-Pulse Melt Processing

I. M. Maksymchuk, A. O. Khriplyviy, V. V. Friezel, P. M. Romanko

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 30.10.2019; final version - 19.08.2020. Download: PDF

The influence of the magnetic pulse treatment (MPT) on the crystallization kinetics, phase composition and morphology of the structural components of the Al–7Si–4Fe melt is studied by X-ray diffractometry, direct thermographic and DSC analysis. As shown, the elevated iron content in the Al–7Si–4Fe melt shifts the crystallization temperature of the primary aluminium dendrites to the crystallization temperature of pure aluminium. MPT of the melt does not affect the temperature ranges of the components crystallization; however, it increases the eutectic crystallization rate by three times. The effect is explained by the enhancement of the melt microliquation, which intensifies with an increase in the pulse repetition rate of the magnetic field, while the areas of microheterogeneity of the liquid alloy are significantly dispersed. In the framework of the cluster model, the ideas about a probable structure of the Al–7Si–4Fe melt near the liquidus temperature and the effect of the MPT modes on its formation are set forth. For the first time, it is hypothesized that under conditions of rapid cooling of the melt, the realization of separate or abnormal mechanisms of eutectic crystallization is related to the ratio in the melt of the fractions of Al$_{1-x}$Si$_x$ clusters with metallic and covalent bonds. MPT leads to the formation and significant increase in the fraction of clusters with metallic bonds and to the enhancement of the abnormal mechanism of eutectic crystallization. As shown, an increase in the pulse repetition rate twofold and, as a consequence, doubling the energy effect on the melt not only enhance the dispersion of the microliquation areas of the melt, but leads to the formation of a stable configuration of Al$_n$Fе$_m$Si$_l$ clusters characterized by short-range order, similar to the ordering of atoms in the Al$_9$Fe$_2$Si$_2$ phase.

Key words: magnetic-pulse treatment, cluster structure of melt, crystallization kinetics.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1373.html

DOI: https://doi.org/10.15407/mfint.42.10.1373

PACS: 61.25.Mv, 61.66.Dk, 61.72.Mm, 64.70.dg, 81.70.Pg, 83.60.Np

Citation: I. M. Maksymchuk, A. O. Khriplyviy, V. V. Friezel, and P. M. Romanko, Features of Crystallization, Formation of Phase Composition and Morphology of Al–7Si–4Fe Alloy Structural Units under Magnetic-Pulse Melt Processing, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1373—1386 (2020) (in Ukrainian)


REFERENCES
  1. S. Ji, W. Yang, F. Gao, D. Watson, and Zh. Fan, Mater. Sci. Eng. A, 564: 130 (2013). Crossref
  2. B. Fragoso and H. Santos, J. Mater. Res. Technol., 2(2):100 (2013). Crossref
  3. Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa, Mater. Trans., 48, No. 9: 2467 (2007). Crossref
  4. B. Xiufang, W. Weimin, Y. Shujuan, and Q. Jingy, Sci. Technol. Adv. Mater., 2, Iss. 1: 19 (2001). Crossref
  5. A. H. Pryhunova, M. V. Koshelev, S. S. Petrov, and S. V. Pryhunov, Protsessy Litya, No. 3 (111): 27 (2015) (in Russian).
  6. D. G. Chernikov, V. A. Glouschenkov, F. V. Grechnikov, A. J. Igolkin, and R. J. Jusupov, Proc. 3rd Int. Conf. High Speed Form., (March 11-12, 2008) (Germany, Dortmund: 2008), p. 223. Crossref
  7. N. Waki, K. Sassa, and S. Asai, Tetsu-to-Hagane, 86: 363, (2000). Crossref
  8. V. A. Gluschenkov, F. V. Grechnikov, V. I. Nikitin, D. G. Chernikov, A. Yu. Igolkin, K. V. Nikitin, and A.A. Pozdnyakov, Liteyshchik Rossii, No. 7: 34 (2010) (in Russian).
  9. V. A. Gluschenkov, F. V. Grechnikov, A. Yu. Igolkin, V. I. Nikitin and K. V. Nikitin, Liteynoe Proizvodstvo, No. 9: 8 (2011) (in Russian).
  10. V. A. Efimov, L. A. Anisovich, V. N. Babich, Spetsialnye Sposoby Litya. Spravochnik (Ed. V. A. Efimov) (Moscow: Mashinostroenie: 1991) (in Russian).
  11. G. Iu. Berk, Spravochnoe Posobie po Magnitnym Yavleniyam (Moscow: Energoatomizdat: 1991) (in Russian).
  12. I. M. Maksymchuk, A. O. Khryplyvyiy, V. G. Tkachenko, and V. V. Frizel, Metaloznavstvo ta Obrobka Metaliv, No. 4: 10 (2012) (in Ukrainian).
  13. I. M. Maksymchuk, V. G. Tkachenko, A. S. Vovchok, N. P. Medalovich, and E. S. Makarenko, Metallofiz. Noveishie Tehnol., 36, No. 1: 1 (2014) (in Russian).
  14. I. N. Maksimchuk, A. A. Hriplivyiy, V. G. Tkachenko, and V. V. Frizel, Visnyk UMT, No. 1 (5): 78 (2012) (in Russian).
  15. Sanghwan Lee, Bonghwan Kim, and Sangmok Lee, Alloys Mater. Trans., 52, No. 6: 1308 (2011). Crossref
  16. S. S. Petrov, A. H. Pryhunova, and D. M. Klyuchnyk, Metaloznavstvo ta Obrobka Metaliv, No. 1: 12 (2007) (in Ukrainian).
  17. S. S. Petrov, A. H. Pryhunova, D. M. Klyuchnyk, and S. V. Pryhunov, Metaloznavstvo ta Obrobka Metaliv, No. 2: 1 (2008) (in Russian).
  18. John A. Taylor, Procedia Mater. Sci., 1: 19 (2012). Crossref
  19. Wang Qiang, Wang En-Gang, He Ji-Cheng, and Hu Ke, Mater. Sci. Forum, 546-549: 1003 (2007). Crossref
  20. Xiufang Bian and Weimin Wang, Mater. Lett., 44: 54 (2000). Crossref
  21. Yong Zhang, Hongliang Zheng, Yue Liu, Lei Shi, Rongfu Xu, and Xuelei Tian, Acta Mater., 70: 162 (2014). Crossref
  22. Jianbo Yu, Zhongming Ren, Weili Ren, Kang Deng, and Yunbo Zhong, Acta Metallurgica Sinica (English Letters), 22, Iss. 3: 191 (2009). Crossref
  23. Songyou Wang, C. Z. Wang, C. X. Zheng, and K. M. Ho, J. Non-Cryst. Solids, 355: 340 (2009). Crossref
  24. N. K. Tolochko and A. A. Andrushevich, Lityo i Metallurgiya, No. 4: 59 (2013) (in Russian).