Loading [MathJax]/jax/output/HTML-CSS/jax.js

New Triple Functional Titanium Alloys

M. B. Babanli1, V. S. Huseynov1, S. S. Huseynov1, A. O. Perekos2, L. D. Demchenko3, A. N. Titenko4

1Azerbaijan State Oil and Industrial University, 20 Azadliq, AZ-1010 Baku, Azerbaijan
2G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
3National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
4Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.10.2019; final version - 22.12.2020. Download: PDF

The work is aimed at studying the effect of doping with tin in an amount of x = 1–8% wt. on the mechanical behaviour under uniaxial tension of alloys of ternary system Ti–12%Mo–xSn subjected to complex thermomechanical treatment, consisting of melting, homogenizing annealing, quenching, cold rolling with a compression degree of 90–99% and finishing quenching. The changes in mechanical properties of the ternary alloys depending on the concentration of alloying element are analysed. As experimentally established, an increase in strength indices with a decrease in ductility is noted with an increase in tin content up to 10%. Thus, the increase in yield stress is 20–40%, in ultimate strength is 27–35%, and in ductility is in the range of +10–-30% as compared to the indices for the quenched binary alloy Ti–12%Mo after the similar thermomechanical treatment. Such deformation behaviour and an increase in strength characteristics are due to solid-solution hardening, while the alloy deformation occurs by mechanical twinning and phase transformation, that is confirmed by microscopic and X-ray diffraction studies. High ductility of alloys with tin concentration of 1–6% is due to the simultaneous induction of strain martensite with an orthorhombic lattice and twinning, which is accompanied by a high rate of strain hardening.

Key words: titanium alloys, stress-induced martensite transformation, deformation, twinning, plasticity.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0367.html

DOI: https://doi.org/10.15407/mfint.43.03.0367

PACS: 61.72.S-, 62.20.fg, 62.23.St, 64.70.Nd, 81.30.Kf, 81.40.Ef

Citation: M. B. Babanli, V. S. Huseynov, S. S. Huseynov, A. O. Perekos, L. D. Demchenko, and A. N. Titenko, New Triple Functional Titanium Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 3: 367—381 (2021) (in Ukrainian)


REFERENCES
  1. V. N. Gridnev, O. M. Ivasishin, and S. P. Oshkaderov, Fizicheskie Osnovy Skorostnogo Termouprochneniya Titanovykh Splavov [Physical Foundations of High-Speed Thermal Hardening of Titanium Alloys] (Kyiv: Naukova Dumka: 1986) (in Russian).
  2. V. N. Gridnev, V. I. Trefilov, S. A. Firstov, V. G. Gavrilyuk, S. P. Oshkaderov, V. N. Minakov, Yu. N. Petrov, Yu. Ya. Meshkov, A. V. Belotskiy, O. M. Ivasishin, and V. T. Cherepin, Fazovye i Strukturnye Prevrashcheniya i Metastabilnye Sostoyaniya v Metallakh [Phase and Structural Transformations and Metastable States in Metals] (Kyiv: Naukova Dumka: 1988), chapter 9 (in Russian).
  3. O. M. Ivasishin, O. D. Pohrebnyak, and S. M. Bratushka, Nanostrukturovani Shary ta Pokryttya, Otrymani za Dopomohoyu Iono-Plazmovykh Potokiv u Tytanovykh Splavakh ta Stalyakh [Nanostructured Layers and Coating Formed by Ion-Plasma Fluxes in Titanium Alloys and Steels] (Kyiv: Akademperiodyka: 2011) (in Ukrainian).
  4. I. Weiss and S. L. Semiatin, Mater Sci. Eng. A, 243: 46 (1998). Crossref
  5. D. Banerjee and J. C. Williams, Acta Mater., 61: 844 (2013). Crossref
  6. R. P. Kolli, W. J. Joost, and S. Ankem, JOM, 67: 1273 (2015). Crossref
  7. U. Zwicker, Titan i Ego Splavy [Titanium and Its Alloys] (Moscow: Metallurgiya: 1979) (in Russian).
  8. J. B. Brunski, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science - An Introduction to Materials in Medicine (San Diego: Elsevier Academic Press: 2004).
  9. M. B. Babanli, Bystrozakalennye Splavy [Quick Hardened Alloys] (Baku: ELM: 2004) (in Russian).
  10. M. B. Babanli, Splavy s Effektom Pamyati Formy [Shape Memory Alloys] (Baku: ELM: 2006) (in Russian).
  11. W. F. Ho, C. P. Ju, and J. H. Chern Lin, Biomaterials, 20: 2115 (1999). Crossref
  12. F. Sun, T. Gloriant, P. Vermaut, P. Jacques, and F. Prima, Solid State Phenomena, 172-174: 129 (2011). Crossref
  13. D. M. Gordin, E. Delvat, R. Chelariu, G. Ungureanu, M. Besse, D. Laille, and T. Gloriant, Adv. Eng. Mater., 10: 714 (2008). Crossref
  14. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 66: 749 (2012). Crossref
  15. U. Kocks and H. Mecking, Prog. Mater. Sci., 48: 171 (2003). Crossref
  16. F. Sun, J. Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, P. Castany, C. Curfs, P. J. Jacques, and F. Prima, Acta Mater., 61: 6406 (2013). Crossref
  17. Marteleur M. F. Sun, T. Gloriant, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 66: 749 (2012). Crossref
  18. O. P. Karasevskaya, O. M. Ivasishin, S. L. Semiatin, and Yu. V. Matviychuk, Materials Science and Engineering A, 354: 121 (2003). Crossref
  19. W.-F. Ho, J. Alloys Compd., 464: 580 (2008). Crossref
  20. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A, 319-321: 246 (2001). Crossref
  21. D. R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater., 61: 494 (2013). Crossref
  22. T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, and H. Ye, Acta Mater., 133: 21 (2017). Crossref
  23. F. Sun, J. Y. Zhang, M. Marteleur, C. Brozek, E. F. Rauch, M. Veron, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 94: 17 (2015). Crossref
  24. M. Ahmed, D. Wexler, G. Casillas, D. G. Savvakin, and E. V. Pereloma, Acta Mater., 104: 190 (2016). Crossref
  25. H. Liu, M. Niinomi, M. Nakai, J. Hieda, and K. Cho, Scripta Mater., 82: 29 (2014). Crossref
  26. X. Min, X. Chen, S. Emura, and K. Tsuchiya, Scripta Mater., 69: 393 (2013). Crossref
  27. X. H. Min, S. Emura, T. Nishimura, K. Tsuchiya, and K. Tsuzaki, Mater. Sci. Eng. A, 527: 5499 (2010). Crossref
  28. J. Zhao, H. Duan, and H. Li, Rare Metal Materials and Engineering, 39: 1707 (2010). Crossref
  29. S. Nag, R. Banerjee, J. Stechschulte, and H. L. Fraser, J. Materials Science: Materials in Medicine, 16: 679 (2005). Crossref
  30. I. Weiss and S. L. Semiatin, Materials Science and Engineering A, 243: 46 (1998). Crossref
  31. J. Gao, Y. Huang, D. Guan, A. J. Knowles, L. Ma, D. Dye, and W. Mark Rainforth, Acta Mater., 152: 301 (2018). Crossref