New Triple Functional Titanium Alloys

M. B. Babanli$^{1}$, V. S. Huseynov$^{1}$, S. S. Huseynov$^{1}$, A. O. Perekos$^{2}$, L. D. Demchenko$^{3}$, A. N. Titenko$^{4}$

$^{1}$Azerbaijan State Oil and Industrial University, 20 Azadliq, AZ-1010 Baku, Azerbaijan
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{4}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.10.2019; final version - 22.12.2020. Download: PDF

The work is aimed at studying the effect of doping with tin in an amount of $x$ = 1–8% wt. on the mechanical behaviour under uniaxial tension of alloys of ternary system Ti–12%Mo–$x$Sn subjected to complex thermomechanical treatment, consisting of melting, homogenizing annealing, quenching, cold rolling with a compression degree of 90–99% and finishing quenching. The changes in mechanical properties of the ternary alloys depending on the concentration of alloying element are analysed. As experimentally established, an increase in strength indices with a decrease in ductility is noted with an increase in tin content up to 10%. Thus, the increase in yield stress is 20–40%, in ultimate strength is 27–35%, and in ductility is in the range of +10–-30% as compared to the indices for the quenched binary alloy Ti–12%Mo after the similar thermomechanical treatment. Such deformation behaviour and an increase in strength characteristics are due to solid-solution hardening, while the alloy deformation occurs by mechanical twinning and phase transformation, that is confirmed by microscopic and X-ray diffraction studies. High ductility of alloys with tin concentration of 1–6% is due to the simultaneous induction of strain martensite with an orthorhombic lattice and twinning, which is accompanied by a high rate of strain hardening.

Key words: titanium alloys, stress-induced martensite transformation, deformation, twinning, plasticity.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0367.html

DOI: https://doi.org/10.15407/mfint.43.03.0367

PACS: 61.72.S-, 62.20.fg, 62.23.St, 64.70.Nd, 81.30.Kf, 81.40.Ef

Citation: M. B. Babanli, V. S. Huseynov, S. S. Huseynov, A. O. Perekos, L. D. Demchenko, and A. N. Titenko, New Triple Functional Titanium Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 3: 367—381 (2021) (in Ukrainian)


REFERENCES
  1. V. N. Gridnev, O. M. Ivasishin, and S. P. Oshkaderov, Fizicheskie Osnovy Skorostnogo Termouprochneniya Titanovykh Splavov [Physical Foundations of High-Speed Thermal Hardening of Titanium Alloys] (Kyiv: Naukova Dumka: 1986) (in Russian).
  2. V. N. Gridnev, V. I. Trefilov, S. A. Firstov, V. G. Gavrilyuk, S. P. Oshkaderov, V. N. Minakov, Yu. N. Petrov, Yu. Ya. Meshkov, A. V. Belotskiy, O. M. Ivasishin, and V. T. Cherepin, Fazovye i Strukturnye Prevrashcheniya i Metastabilnye Sostoyaniya v Metallakh [Phase and Structural Transformations and Metastable States in Metals] (Kyiv: Naukova Dumka: 1988), chapter 9 (in Russian).
  3. O. M. Ivasishin, O. D. Pohrebnyak, and S. M. Bratushka, Nanostrukturovani Shary ta Pokryttya, Otrymani za Dopomohoyu Iono-Plazmovykh Potokiv u Tytanovykh Splavakh ta Stalyakh [Nanostructured Layers and Coating Formed by Ion-Plasma Fluxes in Titanium Alloys and Steels] (Kyiv: Akademperiodyka: 2011) (in Ukrainian).
  4. I. Weiss and S. L. Semiatin, Mater Sci. Eng. A, 243: 46 (1998). Crossref
  5. D. Banerjee and J. C. Williams, Acta Mater., 61: 844 (2013). Crossref
  6. R. P. Kolli, W. J. Joost, and S. Ankem, JOM, 67: 1273 (2015). Crossref
  7. U. Zwicker, Titan i Ego Splavy [Titanium and Its Alloys] (Moscow: Metallurgiya: 1979) (in Russian).
  8. J. B. Brunski, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science - An Introduction to Materials in Medicine (San Diego: Elsevier Academic Press: 2004).
  9. M. B. Babanli, Bystrozakalennye Splavy [Quick Hardened Alloys] (Baku: ELM: 2004) (in Russian).
  10. M. B. Babanli, Splavy s Effektom Pamyati Formy [Shape Memory Alloys] (Baku: ELM: 2006) (in Russian).
  11. W. F. Ho, C. P. Ju, and J. H. Chern Lin, Biomaterials, 20: 2115 (1999). Crossref
  12. F. Sun, T. Gloriant, P. Vermaut, P. Jacques, and F. Prima, Solid State Phenomena, 172-174: 129 (2011). Crossref
  13. D. M. Gordin, E. Delvat, R. Chelariu, G. Ungureanu, M. Besse, D. Laille, and T. Gloriant, Adv. Eng. Mater., 10: 714 (2008). Crossref
  14. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 66: 749 (2012). Crossref
  15. U. Kocks and H. Mecking, Prog. Mater. Sci., 48: 171 (2003). Crossref
  16. F. Sun, J. Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, P. Castany, C. Curfs, P. J. Jacques, and F. Prima, Acta Mater., 61: 6406 (2013). Crossref
  17. Marteleur M. F. Sun, T. Gloriant, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 66: 749 (2012). Crossref
  18. O. P. Karasevskaya, O. M. Ivasishin, S. L. Semiatin, and Yu. V. Matviychuk, Materials Science and Engineering A, 354: 121 (2003). Crossref
  19. W.-F. Ho, J. Alloys Compd., 464: 580 (2008). Crossref
  20. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A, 319-321: 246 (2001). Crossref
  21. D. R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater., 61: 494 (2013). Crossref
  22. T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, and H. Ye, Acta Mater., 133: 21 (2017). Crossref
  23. F. Sun, J. Y. Zhang, M. Marteleur, C. Brozek, E. F. Rauch, M. Veron, P. Vermaut, P. J. Jacques, and F. Prima, Scripta Mater., 94: 17 (2015). Crossref
  24. M. Ahmed, D. Wexler, G. Casillas, D. G. Savvakin, and E. V. Pereloma, Acta Mater., 104: 190 (2016). Crossref
  25. H. Liu, M. Niinomi, M. Nakai, J. Hieda, and K. Cho, Scripta Mater., 82: 29 (2014). Crossref
  26. X. Min, X. Chen, S. Emura, and K. Tsuchiya, Scripta Mater., 69: 393 (2013). Crossref
  27. X. H. Min, S. Emura, T. Nishimura, K. Tsuchiya, and K. Tsuzaki, Mater. Sci. Eng. A, 527: 5499 (2010). Crossref
  28. J. Zhao, H. Duan, and H. Li, Rare Metal Materials and Engineering, 39: 1707 (2010). Crossref
  29. S. Nag, R. Banerjee, J. Stechschulte, and H. L. Fraser, J. Materials Science: Materials in Medicine, 16: 679 (2005). Crossref
  30. I. Weiss and S. L. Semiatin, Materials Science and Engineering A, 243: 46 (1998). Crossref
  31. J. Gao, Y. Huang, D. Guan, A. J. Knowles, L. Ma, D. Dye, and W. Mark Rainforth, Acta Mater., 152: 301 (2018). Crossref