Laser Welding of Ti–Ni Shape Memory Alloy for Medical Application

V. Shelyagin$^{1}$, A. Bernatskyi$^{1}$, O. Siora$^{1}$, S. Kedrovskyi$^{2,3}$, Yu. Koval$^{2,3}$, V. Slipchenko$^{2}$, V. Filatova$^{2}$, G. Firstov$^{2}$

$^{1}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 02.09.2020. Download: PDF

The work is devoted to investigations of laser welding of rolled metal of a medical functional Ti–Ni system alloy. On the basis of the analysis of literary sources and the results of own investigations of the influence of laser welding parameters on functional characteristics of Ti–Ni shape memory alloy, the challenging directions of the further investigations are established. According to the results of the investigations of welds microstructure, concentration dependence of absolute values of recovery deformation during measurement of the shape memory effect, and investigations of phase transitions, it is established that the processes, occurring in welding zone, affect not only the strength of a joint, but also the parameters of martensitic transformation. As established, due to laser radiation and subsequent recrystallization of material in the weld area, the feasibility of shape recovery by the material of the weld body is saved, but characteristic temperatures of direct and reverse martensitic transformations grow up. The direct martensitic transformation in the region of welded joints is observed in the temperature range from 45°С to 20°С. Shape recovery in material of welded joints is observed at temperature range of 60–100°С. The obtained results allow determining the ranges of values in which it is expedient to optimize the parameters of laser treatment modes.

Key words: shape memory alloys, Ti–Ni alloys, laser welding, thermoelastic martensitic transformation, recrystallization.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0383.html

DOI: https://doi.org/10.15407/mfint.43.03.0383

PACS: 42.62.Be, 42.62.Cf, 62.20.fg, 81.20.Vj, 81.30.Kf

Citation: V. Shelyagin, A. Bernatskyi, O. Siora, S. Kedrovskyi, Yu. Koval, V. Slipchenko, V. Filatova, and G. Firstov, Laser Welding of Ti–Ni Shape Memory Alloy for Medical Application, Metallofiz. Noveishie Tekhnol., 43, No. 3: 383—398 (2021)


REFERENCES
  1. T. Morris, The Matter of the Heart: a History of the Heart in Eleven Operations (New York City: Thomas Dunne Books: 2018).
  2. B. Iung and A. Vahanian, Nature Reviews Cardiology, 8: 162 (2011). Crossref
  3. C. Fauvel, R. Capoulade, E. Durand, D. M. Béziau, J. J. Schott, T. Le Tourneau, and H. Eltchaninoff, Archives of Cardiovascular Diseases, 113, No. 3: 209 (2020). Crossref
  4. A. M. Williams, A. A. Brescia, T. M. Watt, M. A. Romano, and S. F. Bolling, Progress in Cardiovascular Diseases, 62, No. 6: 473 (2019). Crossref
  5. J. L. Cox, N. Ad, K. Myers, M. Gharib, and R. C. Quijano, J. Thoracic and Cardiovascular Surgery, 130, No. 2: 520 (2005). Crossref
  6. Sachie Inoue, Koichi Nakao, Michiya Hanyu, Kentaro Hayashida, Hidetoshi Shibahara, Makoto Kobayashi, Miyoshi Asaoka, Kazuhiko Nishikawa, Seth Clancy, Jun Koshiishi, and Hiroyuki Sakamaki, Value in Health Regional Issues, 21: 82 (2020). Crossref
  7. B. Iung, G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Bärwolf, O. W. Levang, P. Tornos, J.-L. Vanoverschelde, F. Vermeer, E. Boersma, Ph. Ravaud, and A. Vahanian, European Heart J., 24, No. 13: 1231 (2003). Crossref
  8. Price List Health Care Services Provided to Patients of LLC 'Clinic of New Technologies', http://www.cnt-amosov.com.ua/price.ukr.php
  9. B. A. Carabello and W. J. Paulus, Lancet, 373, No. 9667: 956 (2009). Crossref
  10. J. K. Forrest, Yale J. Biology and Medicine, 85: 239 (2012).
  11. M. Thomas, G. Schymik, T. Walther, D. Himbert, T. Lefèvre, H. Treede, H. Eggebrecht, P. Rubino, I. Michev, R. Lange, W. N. Anderson, and O. Wendler, Circulation, 122, No. 1: 62 (2010). Crossref
  12. N. Piazza, E. Grube, U. Gerckens, A. Linke, O. Luha, A. Ramondo, G. Ussia, P. Wenaweser, S. Windecker, J. C. Laborde, P. de Jaegere, and P. W. Serruys, EuroIntervention, 4, No. 2: 242 (2008). Crossref
  13. L. Buellesfeld, P. Wenaweser, U. Gerckens, R. Mueller, B. Sauren, G. Latsios, B. Zickmann, G. Hellige, S. Windecker, and E. Grube, European Heart J., 31, No. 8: 984 (2010). Crossref
  14. C. V. Bourantas N. M. van Mieghem, V. Farooq, O. I. Soliman, S. Windecker, N. Piazza, and P. W. Serruys, Int. J. Cardiology, 168, No. 1: 11 (2013). Crossref
  15. E. A. Ovcharenko and I. I. Grekov, Bulletin of Surgery, 173, No. 5: 86 (2014) (in Russian).
  16. V. E. Gyunter, V. I. Itin, L. A. Monasevich, Yu. I. Paskal et al., Effekty Pamyati Formy i Ikh Primenenie v Meditsine [Shape Memory Effects of and their Use in Medicine] (Novosibirsk: Nauka: 1992) (in Russian).
  17. V. E. Gunter, V. N. Khodorenko, T. L. Chekalkin, and V. N. Olesova, Meditsinskie Materialy i Implantaty s Pamyatyu Formy [Medical Shape Memory Materials and Implants] (Tomsk: Publishing House of the International Information Centre: 2011), vol. 1 (in Russian).
  18. J. Shaw and S. Kyriakides, J. Mechanics and Physics of Solids, 43, No. 8: 1243 (1995). Crossref
  19. V. A. Lokhov, Yu. I. Nyashin, and A. G. Kuchumov, Russian J. Biomechanics, 11, No. 3: 9 (2007) (in Russian).
  20. C. Kleinstreuer, Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber, J. Biomechanics, 41, No. 11: 2370 (2008). Crossref
  21. W. Yan, C. H. Wang, X. P. Zhang, and Y. W. Mai, Smart Mater. Struct., 11: 947 (2002). Crossref
  22. I. Vesely, J. Heart Valve Disease, 19: 543 (2010).
  23. V. E. Gunther, Materialy s Pamyatyu Formy i Novye Tekhnologii v Meditsine [Shape Memory Materials and New Technologies in Medicine] (Tomsk: International Information Centre: 2007) (in Russian).
  24. R. Zhuk, M. Anyakin, P. Kondrashev, O. Stepura, A. Muckhoid, and V. Kovalenko, Proc. of 26th International Congress on Applications of Lasers and Electro-Optics ICALEO 2007 (October 29 - November 1, 2007, Orlando) (Melville: 2007), p. 551. Crossref
  25. V. D. Shelyagin, A. V. Bernatskyi, O. M. Berdnikova, V. M. Sydorets, O. V. Siora, and S. G. Gryhorenko, Metallofiz. Noveishie Tekhnol., 42, No. 3: 363 (2020) (in Ukrainian). Crossref
  26. V. D. Poznyakov, L. I. Markashova, V. D. Shelyagin, S. L. Zhdanov, A. V. Bernats'kyi, O. M. Berdnikova, and V. M. Sydorets, Strength Mater., 51: 843 (2019). Crossref
  27. V. Shelyagin, V. Khaskin, A. Bernatskyi, A. Siora, V. Sydorets, and D. Chinakhov, Mater. Sci. Forum, 927: 64 (2018). Crossref
  28. A. V. Bernatskyi, O. M. Berdnikova, I. M. Klochkov, V. M. Sydorets, and D. A. Chinakhov, IOP Conference Series: Materials Science and Engineering, 582: 012048 (2019). Crossref
  29. O. V. Siora and A. V. Bernatsky, Metallofiz. Noveishie Tekhnol., 33: 569 (2011) (in Russian).
  30. L. Markashova, O. Berdnikova, A. Bernatskyi, V. Sydorets, and O. Bushma. IOP Conference Series: Earth and Environmental Science, 224: 012013 (2019). Crossref
  31. A. I. Lotkov, Yu. N. Koval, V. N. Grishkov, D. Yu. Zhapova, V. N. Timkin, and G. S. Firstov, Inorg. Mater. Appl. Res., 6: 498 (2015). Crossref
  32. G. S. Firstov, R. G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, Biomaterials, 23: 4863 (2002). Crossref
  33. Yu. M. Koval, R. Ya. Musienko, V. M. Slipchenko, T. G. Sych, S. M. Kedrovsky, and D. M. Kaleko, Metallofiz. Noveishie Tekhnol., 37, No. 10: 1339 (2015) (in Ukrainian). Crossref
  34. S. Kedrovsky, Yu. Koval, V. Slipchenko, E. Slipchenko, and A. Filatov, Metallofiz. Noveishie Tekhnol., 37, No. 2: 199 (2015) (in Russian). Crossref