Deformation and Fracture of Single Crystals of Heat-resistant Nickel Alloys with Welded Joints During Tensile Tests

O. P. Karasevska$^{1}$, K. A. Yushchenko$^{2}$, B. A. Zadery$^{2}$, I. S. Gakh$^{2}$, H. V. Zviagintseva$^{2}$, Т. O. Alekseenko$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 26.01.2021; final version - 21.05.2021. Download: PDF

The features of deformation and fracture in the temperature range of 500–1200°С under tension of samples of welded joints of heat-resistant nickel alloys single crystals are investigated. The joints are made by the electron beam method with a perpendicular (group 1) and parallel (group 2) weld location relative to the applied load. The values of tensile yield stress ($\sigma_{y}$), elongation ($\delta$) and the difference in the types of destruction in the low-temperature ($\leq$ 800°С) and high-temperature (> 800°С) test areas are established, which are mainly associated with the dispersion and defectiveness of the growth structure and the structure obtained in welds. Fracture in the 1$^{st}$ group of specimens, in the low-temperature region, occurs outside the weld along the growth structure of the single crystal, mainly by transcrystalline macroshear with a mixed nature of the fracture with the values of $\sigma_{y}$ lower by $\sim$ 15% than in the 2$^{nd}$ group. Samples of the 2$^{nd}$ group in the low-temperature region are destroyed along the interdendritic spaces with noticeable marks of plastic deformation; with an increase in temperature, the part of ductile fracture decreases and the part of interphase fracture increases, the fractures of which repeat the dendritic morphology of the weld structure. In the high-temperature region, the samples of the 1$^{st}$ group are destroyed according to the mechanism of brittle transcrystalline cleavage with multi-site nucleation along the interphase boundaries of the weld with higher values of $\sigma_{y}$ than in the 2$^{nd}$ group. The peculiarities of deformation are considered in connection with structural changes in welds in comparison with the growth structure of the initial heat-resistant nickel alloys single crystals.

Key words: single crystals of heat-resistant nickel alloys, structure of welded joints, temperature and deformation of destruction.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i07/0939.html

DOI: https://doi.org/10.15407/mfint.43.07.0939

PACS: 61.50.Ks, 61.66.Dk, 61.72.Dd, 62.20.M-, 81.20.Vj, 81.40.Np, 81.70.Bt

Citation: O. P. Karasevska, K. A. Yushchenko, B. A. Zadery, I. S. Gakh, H. V. Zviagintseva, and Т. O. Alekseenko, Deformation and Fracture of Single Crystals of Heat-resistant Nickel Alloys with Welded Joints During Tensile Tests, Metallofiz. Noveishie Tekhnol., 43, No. 7: 939—957 (2021) (in Ukrainian)


REFERENCES
  1. E. N. Kablov, Litye Lopatki Gazoturbinnykh Dvigateley (Splavy, Tekhnologiya, Pokrytiya) [Cast Blades of Gas Turbine Engines (Alloys, Technology, Coatings)] (Moscow: MISIS: 2001) (in Russian).
  2. H. Hurada, Proc. of 'International Gas Turbine Congress-2003' (November 2-7, 2003). (Tokyo: 2003), p. 1.
  3. E. N. Kablov, N. V. Petrushin, I. L. Svetlov, and I. M. Demonis, Tekhnologiya Legkikh Splavov, No. 2: 6 (2007) (in Russian).
  4. E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, Vestnik MGTU im. N. E. Baumana. Ser. 'Mashinostroenie', Sp. 2: 38 (2011) (in Russian).
  5. K. A. Yushchenko, B. A. Zaderiy, A. V. Zvyagintseva, S. S. Kotenko, E. P. Polishchuk, V. S. Savchenko, I. S. Gakh, and O. P. Karasevskaya, Avtomaticheskaya Svarka, No. 2: 10 (2008) (in Russian).
  6. I. S. Hakh, Fizyko-Tekhnolohichni Osoblyvosti Elektronno-Promenevoho Zvaryuvannya Vysokonikelevykh Zharomitsnykh Splaviv z Monokrystalichnoyu Strukturoyu [Physical and Technological Features of Electron Beam Welding of High-Nickel Heat-Resistant Alloys with a Monocrystalline Structure] (Thesis of Disser. for PhD Techn. Sci.) (Kyiv: IEZ im. Ye. O. Patona NAN Ukrayiny: 2011) (in Ukrainian).
  7. N. Wang, S. Mokadem, M. Rappaz, and W. Kurr, Acta Mater., 52, No. 11: 3173 (2004). Crossref
  8. J.-W. Park, J. M. Vitek, S. S. Babu, and S. A. David, Sci. Technol. Welding Joining, 9, Iss. 6: 472 (2004). Crossref
  9. T. D. Anderson and J. N. Du Pont, Weld J., No. 2: 21 (2011).
  10. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, A. V. Zvyagintseva, and O. P. Karasevskaya, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1347 (2013) (in Russian).
  11. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, A. V. Zvyagintseva, and O. P. Karasevskaya, Avtomaticheskaya Svarka, No. 5: 46 (2013) (in Russian).
  12. E. N. Kablov and A. A. Alekseev, Liteynye Zharoprochnye Splavy. Effekt S. T. Kishkina [Casting Heat-Resistant Alloys. Kishkin Effect] (Ed. E. N. Kablov) (Moscow: Nauka: 2006), p. 45 (in Russian).
  13. A. V. Zvyagintseva, Strukturnye i Fazovye Prevrashcheniya v Zharoprochnykh Nikelevykh Splavakh i Ikh Rol' v Obrazovanii Treshchin v Svarnykh Soedineniyakh [Structural and Phase Transformations in Heat-Resistant Nickel Alloys and their Role in the Formation of Cracks in Welded Joints] (Disser. for PhD Techn. Sci.) (Kyiv: IEZ im. Ye. O. Patona NAN Ukrayiny: 2007) (in Russian).
  14. Rentgenografiya v Fizicheskom Materialovedenii [X-Ray in the Physical Material Science] (Ed. Yu. A. Bagryanskiy) (Moscow: Metallurgizdat: 1961) (in Russian).
  15. M. A. Krivoglaz, Difraktsiya Rentgenovskikh Luchey i Neytronov v Neideal'nykh Kristallakh [X-Ray and Neutron Diffraction in Nonideal Crystals] (Kyiv: Naukova Dumka: 1983) (in Russian).
  16. T. Ungar, H. Mughrabi, D. Ronnpagel, and M. Wilkens, phys. status solidi (a), 104, No. 11: 157 (1987). Crossref
  17. O. P. Karasevskaya, Metallofiz. Noveishie Tekhnol., 21, No. 8: 34 (1999) (in Russian).
  18. V. E. Panin, V. E. Egorushkin, and A. V. Panin, Fiz. Mezomekh., 9, No. 3: 9 (2006) (in Russian).
  19. V. V. Rybin, Voprosy Materialovedeniya, 29, No. 1: 11 (2002) (in Russian).
  20. E. Shmid and V. Boas, Plastichnost' Kristallov, v Osobennosti Metallicheskikh [The Plasticity of Crystals, Especially Metal] (Moscow: GONTI KKTP SSSR: 1938) (in Russian).
  21. R. Berner and G. Kronmyuller, Plasticheskaya Deformatsiya Monokristallov [Plastic Deformation of Single Crystals] (Moscow: Mir: 1969) (in Russian).
  22. K. A. Yushchenko, V. S. Savchenko, and A. V. Zvyagintseva, Metallofiz. Noveishie Tekhnol., 32, No. 1: 107 (2010) (in Russian).
  23. Jin-lai Liu, Jin-jiang Yu, Tao Jin, Xiao-feng Sun, Heng-rong Guan, and Zhuang-qi Hu, Trans. Nonferrous Met. Soc. China, No. 21: 1518 (2011). Crossref
  24. E. O. Hall, Proc. Phys. Soc. B, No. 64: 747 (1951). Crossref
  25. N. J. Petch, J. Iron Steel, No. 174: 25 (1953).
  26. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Basis of the Strength of Refractory Metals] (Kyiv: Naukova Dumka: 1975) (in Russian).