Stress State of 6063 Cold-Formed Aluminium Alloy Workpieces in a Closed Die

Zh. Ashkeyev, M. Abishkenov

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Kazakhstan

Received: 28.02.2021. Download: PDF

The article presents the results of stress state analysis for workpieces from aluminium alloy 6063 cold-formed in a closed die. Mathematical methods of computer modelling (finite element method) and slip lines (slip-line field method) are used for the analysis. The experimental procedure for repeated cold deformation in a closed matrix (in several passes and/or cycles), the mechanisms of grain grinding and material hardening under the influence of grain-dislocation factors are described. The results of the stress state study of the material during cold deformation (at room temperature) show that the volume of the workpiece is mainly compressive stresses, the values of which are in the range from -273 MPa to -533 MPa. As found, due to the hydrostatic stress from the side of the punches and the side walls of the semi-dies, the workpiece is subjected to triaxial compression, which makes it possible to obtain volumetric spherical workpieces with ultrafine-grained nanostructure in a closed die with minimal processing cycles.

Key words: slip-line field method, finite element method, stress state, closed die, compressive stresses, triaxial compression.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i07/0959.html

DOI: https://doi.org/10.15407/mfint.43.07.0959

PACS: 02.70.-c, 06.30.Bp, 07.05.Tp, 81.40.Jj, 81.40.Lm, 81.40.Vw

Citation: Zh. Ashkeyev and M. Abishkenov, Stress State of 6063 Cold-Formed Aluminium Alloy Workpieces in a Closed Die, Metallofiz. Noveishie Tekhnol., 43, No. 7: 959—969 (2021)


REFERENCES
  1. E. B. Moustafa and A. O. Mosleh, J. Alloys. Compd., 823: 153745 (2020). Crossref
  2. E. Aghaie, J. Stroh, D. Sediako, A. Rashidi, and A. S. Milani, Mater. Sci. Eng. A, 793: 139899 (2020). Crossref
  3. Y. Chen, S. Zhang, H. Song, M. Cheng, H. Li, and J. Liu, Mater. Des., 91: 314 (2016). Crossref
  4. J. Ren, Z. Chen, J. Peng, W. Ma, and S. P. Ringer, J. Alloys. Compd., 764: 679 (2018). Crossref
  5. M. Li, P. Hu, Y. Zhang, and Y. Chang, J. Nucl. Mater., 543: 152482 (2021). Crossref
  6. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Hoboken: John Wiley & Sons, Inc.: 2014). Crossref
  7. I. Sabirov, N. A. Enikeev, M. Yu. Murashkin, and R. Z. Valiev, Bulk Nanostructured Materials with Multifunctional Properties (Cham: SpringerBriefs in Materials: 2015). Crossref
  8. G. Faraji, H. S. Kim, and H. T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties (Amsterdam: Elsevier Inc.: 2018). Crossref
  9. R. N. Harsha, V. Mithun Kulkarni, and B. Satish Babu, Mater. Today. Proc., 5, No. 10: 22340 (2018). Crossref
  10. E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, Int. J. Adv. Manuf. Tech., 100: 1647 (2019). Crossref
  11. Y. Liu, H. Wang, C. Lu, and A. K. Tieu, Mater. Lett., 277: 128272 (2020). Crossref
  12. Y. Liu, C. Lu, H. Wang, A.K. Tieu, and B. Liu, J. Mater. Res. Technol., 9, No. 3: 6642 (2020). Crossref
  13. U. Okeke, H. Yilmazer, S. Sato, and C. J. Boehlert, Mater. Sci. Eng. A, 760: 195 (2019). Crossref
  14. M. Khajouei-Nezhad, M. H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, and J. Gubicza, Mater. Sci. Eng. A, 682: 501 (2017). Crossref
  15. P. Vishnu, R. Raj Mohan, E. K. Sangeethaa, S. Raghuraman, and R. Venkatraman, Mater. Today. Proc., 21, No. 1: 212 (2020). Crossref
  16. M. Howeyze, H. Arabi, A. R. Eivani, and H. R. Jafarian, Mater. Sci. Eng. A, 720: 160 (2018). Crossref
  17. A. Esmaeili, M. H. Shaeri, M. T. Noghani, and A. Razaghian, J. Alloys Compd., 757: 324 (2018). Crossref
  18. M. Montazeri-Pour, M. H. Parsa, H. R. Jafarian, and S. Taieban, Mater. Sci. Eng. A, 639: 705 (2015). Crossref
  19. S. S. Sajjan, M. V. Kulkarni, S. Ramesh, P. C. Sharath, V. Kumar, and S. Rajole, Mater. Today Proc., 24, No. 2: 212 (2020). Crossref
  20. M. Abishkenov, Zh. Ashkeyev, S. Mashekov, G. Akhmetova, and I. Volokitina, Metalurgija, 59, No. 4: 559 (2020).
  21. W. F. Hosford, Fundamentals of Engineering Plasticity (New York: Cambridge University Press: 2013). Crossref
  22. R. Hill, The Mathematical Theory of Plasticity (Oxford: Oxford University Press: 1998).
  23. M.-H. Yu, G.-W. Ma, H.-F. Qiang, and Y.-Q. Zhang, Generalized Plasticity (Berlin-Heidelberg: Springer: 2006). Crossref
  24. D. W. A. Rees, Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications (Oxford: Butterworth-Heinemann: 2006).
  25. Zh. Ashkeyev, M. Abishkenov, S. Mashekov, and A. Kawałek, Eng. Sol. Mech., 9, No. 2: 161 (2021). Crossref
  26. F. C. Frank, Proc. R. Soc. A, 371: 136 (1980). Crossref
  27. K. Maung, J. C. Earthman, and F. A. Mohamed, Acta Mater., 60, No. 16: 5850 (2012). Crossref
  28. Y. Ito, K. Edalati, and Z. Horita, Mater. Sci. Eng. A, 679: 428 (2017). Crossref