Additive Materials for Producing Thin-Wall Cylindrical Shells

V. A. Kostin, H. M. Hryhorenko

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 15.05.2019; final version - 10.06.2021. Download: PDF

The paper presents the results of modelling of temperature fields, stresses, and strains during additive multi-layer construction formation from the aluminium alloy 1561, low-alloyed structural steel 09G2S, and titanium alloy Grade 2. Based on the experimental results, which obtained earlier in E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine about additive surfacing of these materials, a computer modelling to improve the technology of the additive process is carried out. In the course of the calculations, the influence of the algorithm of the sequence of deposition of additive layers—the surfacing of a cylindrical shell along a ring or spiral—is analysed on the temperature distribution in the cladding and its resistance to external loads. As established, during the formation of cylindrical shells by the additive method, it is advisable to use the technology of surfacing along a spiral and to use less thermally conductive structural materials—structural steels and titanium alloys.

Key words: additive production, modelling, spiral welding, cylindrical shells, stability, titanium alloy Grade 2.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i08/1089.html

DOI: https://doi.org/10.15407/mfint.43.08.1089

PACS: 05.70.Np, 07.20.-n, 46.25.Hf, 62.20.-x, 81.20.Vj, 81.70.Bt

Citation: V. A. Kostin and H. M. Hryhorenko, Additive Materials for Producing Thin-Wall Cylindrical Shells, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1089—1103 (2021) (in Ukrainian)


REFERENCES
  1. S. N. Krivoshapko, Stroitel'naya Mekhanika Inzhenernykh Konstruktsiy i Sooruzheniy, No. 1: 51 (2013) (in Russian).
  2. V. A. Barvinok, Vysokoeffektivnye Tekhnologicheskie Protsessy Izgotovleniya Elementov Truboprovodnykh i Toplivnykh Sistem Letatel'nykh Apparatov [Highly Efficient Technological Processes of Manufacturing Elements of Pipeline and Fuel Systems of Aircraft] (Moscow: Nauka i Tekhnologii: 2002) (in Russian).
  3. V. V. Zhukov, G. M. Grigorenko, and V. A. Shapovalov, Avtomaticheskaya Svarka, No. 5-6: 148 (2016) (in Russian). Crossref
  4. Kaufui V. Wong and Aldo Hernandez, ISRN Mechanical Engineering, 2012: 208760 (2012). Crossref
  5. Robert Brooks, Lockheed Now 3D-Printing Giant Titanium Parts for Satellites.
  6. Z. Jandric, M. Labudovic, and R. Kovacevic, International J. Machine Tools and Manufacture, 44, Iss. 7-8: 785 (2004). Crossref
  7. D. V. Kovalchuk, V. I. Melnik, I. V. Melnik, and B. A. Tugaj, Avtomatic Welding, No. 12: 26 (2017) (in Russian). Crossref
  8. E. V. Shapovalov, V. V. Dolinenko, V. A. Kolyada, T. G. Skuba, and F. S. Klishchar, Avtomatic Welding, No. 7: 46 (2016) (in Russian). Crossref
  9. V. A. Kostin and G. M. Grigorenko, Elektrometallurgy Today, 128, No. 3: 33 (2017) (in Russian). Crossref
  10. V. A. Kostin, G. M. Grigorenko, and V. V. Zhukov, Sovremennaya Elektrometallurgiya, 127, No. 2: 35 (2017). Crossref
  11. O. V. Makhnenko, A. S. Milenin, E. A. Velikoivanenko, G. F. Rozynka, N. I. Pivtorak, S. S. Kozlitina, L. I. Dzyubak, and D. V. Koval’chuk, Matematicheskoe Modelirovanie i Informatsionnye Tekhnologii v Svarke i Rodstvennykh Protsessakh (September 10–14, 2018, Odesa) (Kyiv: Mezhdunarodnaya Assotsiatsiya ‘Svarka’: 2018), p. 68 (in Russian).
  12. N. N. Rykalin, Raschety Teplovykh Protsessov pri Svarke [Calculations of Thermal Processes during Welding] (Moscow: Mashgiz: 1951) (in Russian).