Electron and Positron Work Function, the Schottky Barrier Height of Metal–Dielectric Sandviches. The Ritz Method

V. V. Pogosov, V. I. Reva

Zaporizhzhia Polytechnic National University, 64 Zhukovsky Str., UA-69063 Zaporizhzhya, Ukraine

Received: 14.11.2021. Download: PDF

Within the framework of the Ritz method, the quantum-statistical functional, and the stabilized jellium model, the problem of calculating the surface energy per unit area, the electron and positron work function, and the Schottky barrier height for a metal with a dielectric coating is considered. The calculated values are in satisfactory agreement with both experimental data and the results of the Kohn–Sham calculations. The simplest inhomogeneous dielectric coatings are considered. The connection between the Ritz theory for inhomogeneous coatings and the Kohn–Sham theory for the surface characteristics of metal–dielectric nanosandwiches is established. Invited to take into account the effect of inhomogeneous coating on the metal surface characteristics by scaling a uniform coverage case. The effect of dielectric confinement for the energy characteristics of the asymmetric metal–dielectric sandwiches is reduced to the weighted average value of the dielectric constants. The possibility of application the obtained results in various experimental situations is discussed.

Key words: surface phenomena, electron and positron work function, Schottky barrier, metal–insulator sandwiches, stable jellium models.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i03/0297.html

DOI: https://doi.org/10.15407/mfint.44.03.0297

PACS: 68.03.Cd, 71.60.+z, 73.22.Dj, 73.40.Ns, 73.40.Vz, 78.70.Bj

Citation: V. V. Pogosov and V. I. Reva, Electron and Positron Work Function, the Schottky Barrier Height of Metal–Dielectric Sandviches. The Ritz Method, Metallofiz. Noveishie Tekhnol., 44, No. 3: 297—310 (2022) (in Ukrainian)


REFERENCES
  1. S. Prada, U. Martinez and G. Pacchioni, Phys. Rev. B, 78: 235423 (2008). Crossref
  2. A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, J. Phys.: Condens. Matter., 24: 225303 (2012). Crossref
  3. R. T. Tung, Appl. Phys. Rev., 1: 011304 (2014). Crossref
  4. D. Comparat, Phys. Rev. A, 102: 062812 (2020). Crossref
  5. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, J. Appl. Phys., 111: 034307 (2012). Crossref
  6. M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, and F. Liu, Phys. Rev. B, 86: 125427 (2012). Crossref
  7. R. Y. Liu, A. Huang, C. C. Huang, C.-Y. Lee, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, I. Matsuda, and S.-J. Tang, Phys. Rev. B, 92: 115415 (2015). Crossref
  8. P. M. Dinh, P.-G. Reinhard, and E. Suraud, Phys. Rep., 485: 43 (2010). Crossref
  9. P. V. Vakula, A. V. Babich, V. V. Pogosov, and Yu. A. Kunisky, Metallofiz. Noveishie Tekhnol., 41: 1433 (2011).
  10. A. V. Babich and V. V. Pogosov, Phys. Solid State, 55: 196 (2013). Crossref
  11. V. V. Pogosov, A. V. Babich, and P. V. Vakula, Phys. Solid State, 55: 2120 (2013). Crossref
  12. A. V. Babich, V. V. Pogosov, and V. I. Reva, Phys. Solid State, 57: 2135 (2015). Crossref
  13. N. W. Ashcroft and N. D. Mermin, Solid State Physics (New York: Holt, Rine-hart and Winston: 1976).
  14. C. J. Fall, N. Binggeli, and A. Baldereschi, Phys. Rev. Lett., 88: 156802 (2002). Crossref
  15. L. Gao, J. Souto-Casares, J. R. Chelikowsky, and A. A. Demkov, J. Chem. Phys., 147: 214301 (2017). Crossref
  16. V. V. Pogosov and V. P. Kurbatsky, ZhETF, 92: 304 (2001). Crossref
  17. A. V. Babich and V. V. Pogosov, Surf. Sci., 603: 2393 (2009). Crossref
  18. V. O. Tin'kov, Usp. Fiz. Met., 7, No. 2: 117 (2006) (in Russian). Crossref
  19. I. T. Iakubov, A. G. Khrapak, L. I. Podlubny, and V. V. Pogosov, Solid State Commun., 53: 427 (1985). Crossref
  20. N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett., 107: 207402 (2011). Crossref
  21. R. M. Nieminen and J. Oliva, Phys. Rev. B, 22: 2226 (1980). Crossref
  22. K. Hirabayashi, Phys. Rev. B, 3: 4023 (1971). Crossref
  23. V. V. Batygin and I. N. Toptygin, Sbornik Zadach po Elektrodinamike i Spetsi-al'noy Teorii Otnositel'nosti [Problems in Electrodynamics and Special Theory of Relativity] (Lan': Saint-Petersburg-Moscow-Krasnodar: 2010) (in Russian).
  24. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys., 60: 701 (1988). Crossref
  25. V. G. Zavodinsky and I. A. Kuyanov, J. Appl. Phys., 81: 2715 (1997). Crossref
  26. E. E. Shpil'rayn, K. A. Yakimovich, E. E. Totskiy, D. L. Timrot, and V. A. Fomin, Teplofizicheskie Svoystva Shchelochnykh Metallov [Thermophysical Prop-erties of Alkali Metals] (Moscow: Izdatel'stvo Standartov: 1970) (in Russian).