Effect of Atomic Substitutions on Electronic Structure of Pt$_{1-x}Me_{x}$MnSb ($Me$ = Ni, Au; $x$ = 0.0–1.0)

V. M. Uvarov, M. V. Uvarov

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.05.2022; final version - 13.06.2022. Download: PDF

Using zone calculations in the FLAPS (the full-potential linearized augmented-plane-waves) model, information is obtained on the energy, charge and spin characteristics of Pt$_{1-x}Me_{x}$MnSb alloys ($Me$ = Ni, Au; $x$ = 0.0–1.0). As established, with an increase in the concentration of nickel or gold atoms the interatomic spatial density of electrons decreases, covalent bonds weaken and the binding energies of atoms in alloys decrease. As found, the dominant contributions to the formation of magnetic moments are made by 3d electrons of manganese atoms, and the polarization of electrons at Fermi levels depends on the composition of alloys.

Key words: bandstructure calculations, Heusler alloys, bandstructure, magnetic moments, polarized bandstructure state, spintronic.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i08/0975.html

DOI: https://doi.org/10.15407/mfint.44.08.0975

PACS: 62.20.-x, 63.20.dk, 71.15.-m, 71.15.Mb, 71.20.Nr, 71.27.+a

Citation: V. M. Uvarov and M. V. Uvarov, Effect of Atomic Substitutions on Electronic Structure of Pt$_{1-x}Me_{x}$MnSb ($Me$ = Ni, Au; $x$ = 0.0–1.0), Metallofiz. Noveishie Tekhnol., 44, No. 8: 975—987 (2022)


REFERENCES
  1. G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys., 1: 524 (1971). Crossref
  2. T. Graf, C. Felser, and Stuart S. P. Parkin, Progress in Solid State Chemistry, No. 39: 1 (2011). Crossref
  3. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, arXiv:cond-mat/0203534v3 19 Jul. 2002, p. 1.
  4. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., No. 46: 668 (2007). Crossref
  5. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676: 1 (2005). Crossref
  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, No. 25: 2024 (1983). Crossref
  7. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, arXiv:cond-mat/0510276v1 [cond-mat.mtrl-sci] 11 Oct. 2005, p. 1.
  8. I. Galanakis and Ph. Mavropoulos, J. Phys.: Condens. Matter, 19: 1 (2007). Crossref
  9. P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, Appl. Phys. Lett., 42: 202 (1983). Crossref
  10. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, and J. Wijngaard, J. Phys.: Condens. Matter, 1: 2341 (1989). Crossref
  11. S. E. Kulkova, S. V. Eremeev, T. Kakeshita, S. S. Kulkov, and G. E. Rudenski, Materials Transactions, 47, No. 3: 599 (2006). Crossref
  12. P. P. J. van Engelen, D. B. de Mooij, J. H. Wijngaard, and K. H. J. Buschow, J. Magn. Magn. Mater., 130, Iss. 1-3: 247 (1994). Crossref
  13. H. Masumoto and K. Watanabe, Trans. JIM, 17: 588 (1976). Crossref
  14. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 305 (2016) (in Russian). Crossref
  15. V. N. Uvarov, N. V. Uvarov, S. A. Bespalov, and M. V. Nemoshkalenko, Ukr. J. Phys., 62, No. 2: 106 (2017). Crossref
  16. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Boston: Kluwer Academic: 1994). Crossref
  17. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  18. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and Laurence D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria, Wien: Techn. Universität: 2001).
  19. http://www.wien2k.at/reg_user/faq/.
  20. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 15: 7307(2003). Crossref
  21. V. N. Uvarov and N. V. Uvarov, Metallofiz. Noveishie Tekhnol., 39, No. 3: 309 (2017) (in Russian). Crossref
  22. J. Murrel, S. Kettle, and J. Tedder, Teoriya Valentnosti [Valence Theory] (Moskva: Mir: 1968) (in Russian).
  23. B. L. Aleksandrov and M. B. Rodchenko, Patent RF RU2273058C1 (Published March 27, 2006) (in Russian).