Heat Conductivity of the Material Obtained by Melting Steel on Flame Supersonic Jet of Air–Propane Mix

E. U. Arzikulov$^{1,2}$, X. Xasanov$^{1}$, S. K. Eshmamatov$^{1}$, S. Q. Akhrorov$^{1}$, M. D. Toshboyev$^{1}$, Sh. J. Quvondiqov$^{1}$, D. T. Bobonov$^{2}$

$^{1}$Samarkand State University, 15 University Blvd., UZ-140104 Samarkand, Uzbekistan
$^{2}$Jizzakh Polytechnic Institute, 4 Islam Karimov Str., UZ-130100 Jizzakh, Uzbekistan

Received: 22.03.2021; final version - 16.06.2022. Download: PDF

In this article presented results of measurements of heat conductivity coefficient of the porous material, obtained by melting industrial steel grade ‘Steel 3’ in the range of temperatures from -140 to +400°C measured on ИT-$\lambda$-400 installation. Comparison of the obtained results with data existing in scientific literatures on porous steel became with various degrees of porosity, showed their good agreement. Heat conductivity of such porous samples unlike well-known mechanisms (electronic and phonon) heat conductivity of metals. Heat transfer in this material is explained by mechanisms, which include transfer through solid pore walls and through gases being inside pore.

Key words: mix of air–propane, supersonic jet, flame, steel, heat conductivity, pore, electron, and phonon.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i08/1003.html

DOI: https://doi.org/10.15407/mfint.44.08.1003

PACS: 44.10.+i, 44.30.+v, 71.20.Nr, 72.20.-i, 75.47.-m, 78.55.A

Citation: E. U. Arzikulov, X. Xasanov, S. K. Eshmamatov, S. Q. Akhrorov, M. D. Toshboyev, Sh. J. Quvondiqov, and D. T. Bobonov, Heat Conductivity of the Material Obtained by Melting Steel on Flame Supersonic Jet of Air–Propane Mix, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1003—1012 (2022)


REFERENCES
  1. Louis-Philippe Lefebvre, John Banhart, and David C. Dunand, Advanced Engineering Materials, 10, Iss. 9: 775 (2008). Crossref
  2. M. F. Zhukov and V. E. Panin, Novye Materialy i Tekhnologii. Konstruirovanie Novykh Materialov i Uprochnyaushchikh Tekhnologiy [New Materials and Technologies. Design of New Materials and Hardening Technologies] (Novosibirsk: Nauka: 1993) (in Russian).
  3. V. I. Kononenko, V. M. Baranovskii, and V. P. Dushchenk, Powder Metall. Met. Ceram., 7: 175 (1968). Crossref
  4. E. I. Denisova and A. V. Shak, Izmerenie Teploprovodnosti na Izmeritele IT-lambda-400. Metodicheskoe Rukovodstvo k Laborotornoy Rabote dlya Studentov Spetsial'nosti 110800-Poroshkovaya Metallurgiya, Kompozitnye Materialy, Pokrytiya [Thermal Conductivity Measurement on the IT-lambda-400 Meter. Methodological Guide to Laboratory Work for Students of Specialty 110800-Powder Metallurgy, Composite Materials, Coatings] (Ekaterinburg: 2005), p. 10 (in Russian).
  5. L. M. Anishchenko and V. F. Brekhovskikh, Poroshkovaya Metallurgiya, 4 (136): 53 (1974) (in Russian).
  6. R. Askari, S. Taheri, and S. H. Hejazi, AIP Advances, 5: 097106 (2015). Crossref
  7. Y. Amani, A. Takahashi, P. Chantrenne, S. Maruyama, S. Dancette, and E. Maire, Int. J. Heat Mass Transf., 122: 1 (2018). Crossref
  8. V. V. Calmidi and R. L. Mahajan, J. Heat Transf., 121: 466 (1999). Crossref
  9. L. Miettinen, P. Kekäläinen, T. Turpeinen, J. Hyväluoma, J. Merikoski, and J. Timonen, AIP Advances, 2: 012101-1 (2012). Crossref
  10. K. Miyazaki, S. Tanaka, and D. Nagai, J. Heat Trans., 134, Iss. 5: 051018 (2012). Crossref
  11. M. Quintard, Introduction to Heat and Mass Transport in Porous Media. Public Release (NATO, STO-EN-AVT-261: 2015).
  12. R. H. Tarkhanyan and D. G. Niarchos, Int. J. Thermal Sci., 67: 107 (2013). Crossref
  13. A. F. Abuserwal, E. M. Elizondo Luna, R. Goodall, and R. Woolley, Int. J. Heat Mass Transf., 108, Part B: 1439 (2017). Crossref
  14. B. Ghanbarian and H. Daigle, Water Resources Research, 52: 295 (2016). Crossref
  15. Y. Asakuma and T. Yamamoto, Computer Assisted Methods in Engineering and Science, 20, No. 2: 89 (2013).
  16. A. Engstrom, C. Johansson, E. Lundgren, E. Klavus, F. Ekholm, J. Magnusson, and T. Höjer, Heat Transfer in Pressed Steel Powder-Part 1: Temperature Measurements in Capsules (Uppsala University Press: 2019). 19002 19003 Examensarbete 15 hp.
  17. S. O. Gladkov, Journal of Technical Physics, 78, Iss. 7: 13 (2008) (in Russian).
  18. E. S. Golubtsova and B. A. Kaledin, Lityo i Metallurgiya [Casting and Metallurgy], 4, Iss. 32: 106 (2004) (in Russian).
  19. G. S. Zakozhurnikova and S. S. Zakozhurnikov, Energo- i Resursosberezhenie: Promyshlennost i Transport [Energy and Resource Saving: Industry and Transport], No. 4 (21): 23 (2017) (in Russian).
  20. S. Kang, J. Y. Choi, and S. Choi, Polymers, 11, Iss. 2: 221 (2019). Crossref
  21. E. Litovsky, V. Issoupov, and J. Kleiman, Proc. 32nd International Thermal Conductivity Conference and 20 th International Thermal Expansion Symposium (April 27-May 1, 2014, USA, Indiana, West Lafayette) (West Lafayette: Purdue University: 2014), p. 16.
  22. G. M. Serykh, Izvestiya Tomskogo Ordena Trudovogo Krasnogo Znameni Politekhnicheskogo Instituta Imeni S. M Kirova [Bulletin of the Tomsk Order of the Red Banner of Labor S. M. Kirov Polytechnic Institute], 101: 59 (1958) (in Russian).
  23. A. A. Cheilytko, Tekhnologicheskiy Audit i Proizvodstvennye Rezervy [Technological Audit and Production Reserves], No. 10: 14 (2013) (in Russian).
  24. O. M. Ibrahim, A. H. Al-Saiafi, and S. Alotaibi, Heat and Mass Transfer, 57: 1561 (2021). Crossref