Equation of State and Thermal Properties of Bulk Metallic Glass under High Compressions

S. Gaurav$^{1}$, S. Shankar$^{2}$, Arvind Mishra$^{3}$, S. P. Singh$^{1}$

$^{1}$Department of Applied Physics, Amity University, Gurgaon, Haryana 122413, India
$^{2}$ARSD College, University of Delhi, Dhaula Kuan Enclave I, 110021 New Delhi, India
$^{3}$G. L. Bajaj Institute of Technology and Management, APJ Abdul Kalam Road, Knowledge Park 3, 201303 Greater Noida Uttar Pradesh, India

Received: 17.12.2022; final version - 12.01.2023. Download: PDF

Studies on the equation of state (EOS) for solids are highly valuable in the field of condensed matter physics and geophysics. The analyses of the equation of state under high compressions for solids are already performed. In the proposed study, we have considered the four different approaches (finite strain and interionic potential) to study $P–V–T$ relationship for amorphous glasses. The theoretically obtained results are compared with available experimental data to compare and verify the best suitable equation of state for amorphous solids like glass, which can be used in the future to find the thermodynamic parameters of bulk metallic glass, which is also an amorphous solid in total. The results obtained from Shanker EOS and higher-order Shanker EOS are found to be more consistent with the experimental results. We calculate the Grüneisen parameter and thermal conductivity for the bulk metallic glasses (window and water white glasses) under high compressions.

Key words: bulk metallic glass, equation of state, finite strain theory, Lagrangian strain, Eulerian strain, Debye temperature, thermal conductivity.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i10/1151.html

DOI: https://doi.org/10.15407/mfint.45.10.1151

PACS: 61.50.Ks, 62.20.D-, 62.50.-p, 64.30.-t, 65.60.+a, 81.40.Jj, 81.70.Bt

Citation: S. Gaurav, S. Shankar, Arvind Mishra, and S. P. Singh, Equation of State and Thermal Properties of Bulk Metallic Glass under High Compressions, Metallofiz. Noveishie Tekhnol., 45, No. 10: 1151—1164 (2023)


REFERENCES
  1. F. D. Stacey, B. J. Brennan, and R. D. Irvine, Geophys. Surveys, 4, No. 3: 189 (1981). Crossref
  2. F. Birch, J. Geophys. Research, 57, No. 2: 227 (1952). Crossref
  3. A. Keane, Australian J. Phys., 7, No. 2: 322 (1954). Crossref
  4. C. A. Swenson, J. Phys. Chem. Solids, 29, No. 8: 1337 (1968). Crossref
  5. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science (Oxford: Oxford University Press: 1995). Crossref
  6. D. Q. Zhao, M. X. Pan, W. H. Wang, B. C. Wei, T. Okada, and W. Utsumi, J. Phys. Cond. Matter, 15, No. 50: L749 (2003). Crossref
  7. W. K. Wang, H. Iwasaki, and K. Fukamichi, J. Mater. Sci., 15, No. 11: 2701 (1980). Crossref
  8. F. D. Murnaghan, Proc. National Academy of Sciences, 30, No. 9: 244 (1944). Crossref
  9. X. Sha and R. E. Cohen, J. Phys.: Cond. Matter, 23, No. 7: 075401 (2011). Crossref
  10. S. S. Kushwah and J. Shanker, Physica B: Cond. Matter, 253, Nos. 1-2: 90 (1998). Crossref
  11. P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, J. Phys. C: Solid State Phys., 19, No. 20: L467 (1986). Crossref
  12. S. Gaurav, B. S. Sharma, S. B. Sharma, and S. C. Upadhyaya, Physica B: Cond. Matter, 322, Nos. 3-4: 328 (2002). Crossref
  13. B. Rao, Bulk Metallic Glasses: Materials of Future (2009).
  14. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press: 1954).
  15. S. S. Kushwah and J. Shanker, Physica B: Cond. Matter, 253, Nos. 1-2: 90 (1998). Crossref
  16. A. K. Pandey, B. K. Pandey, and Rahul, J. Alloys Comp., 509, No. 11: 4191 (2011). Crossref
  17. W. H. Wang, P. Wen, L. M. Wang, Y. Zhang, M. X. Pan, D. Q. Zhao, and R. J. Wang, Appl. Phys. Lett., 79, No. 24: 3947 (2001). Crossref
  18. S. Zhongyi, C. Guiyu, Z. Yun, and Y. Xiujun, Phys. Rev. B, 39, No. 4: 2714 (1989). Crossref
  19. W. H. Wang, D. W. He, D. Q. Zhao, Y. S. Yao, and M. He, Appl. Phys. Lett., 75, No. 18: 2770 (1999). Crossref
  20. W. K. Wang, H. Iwasaki, C. Suryanarayana, and T. Masumoto, J. Mater. Sci., 18, No. 12: 3765 (1983). Crossref
  21. F. Ye and K. Lu, Acta Mater., 47, No. 8: 2449 (1999). Crossref
  22. P. W. Bridgman, Rev. Modern Phys., 18, No. 1: 1 (1946). Crossref
  23. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R: Reports, 44, Nos. 2-3: 45 (2004). Crossref
  24. J. Hama and K. Suito, J. Phys.: Cond. Matter, 8, No. 1: 67 (1996). Crossref
  25. F. D. Stacey, Phys. Earth Planetary Interiors, 89, Nos. 3-4: 219 (1995). Crossref
  26. Thermodynamics of Deep Geophysical Media.
  27. LA-UR-92-3407 Sesame: the Los Alamos National Laboratory Equation of State Database Contents.
  28. V. Gospodinov, Int. J. Mod. Phys, 28: 1450196 (2014). Crossref
  29. S. K. Srivastava and P. Sinha, Phys. B: Cond. Matter, 404, No. 21: 4316 (2009). Crossref
  30. M. H. Rice, J. Phys. Chem. Solids, 26, No. 3: 483 (1965). Crossref
  31. Ross J. Angel, Javier Gonzalez-Platas, and Matteo Alvaro, Z. Kristallogr., 229, Iss. 5: 405 (2014). Crossref
  32. G. A. Slack, Solid State Phys., 34: 1 (1979); G. A. Slack, J. Phys. Chem. Solids, 34, Iss. 2: 321 (1973). Crossref
  33. R. Berman, Thermal Conduction in Solids (Oxford: Clarendon Press: 1976).
  34. W. Tang, J. Phys. Chem. Solids, 62, Iss. 11: 1943 (2001). Crossref
  35. S. Gaurav, S. Shankar, R. Anamika, K. Pratibha, and S. Manish, Rus. J. Earth Sci., 22, No. 3: 5 (2022).