Temperature—Frequency Dependences of Dielectric Constants of Magnesium-Substituted Lithium Ferrite

B. K. Ostafiychuk, I. M. Gasyuk, L. S. Kaykan, V. V. Uhorchuk, P. P. Yakubovskiy, V. A. Tsap, Yu. S. Kaykan

Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 22.10.2013; final version - 09.12.2013. Download: PDF

Temperature and frequency dependence of the dielectric constants of magnesium-substituted lithium-iron spinels fabricated by solid-phase synthesis are investigated, using the method of impedance spectroscopy. As shown, the dielectric properties of all the compositions decrease with frequency growth. It is explained by assumption about the dominance of electronic polarization mechanism. The non-monotonic character of the temperature dependence of the real part of the dielectric permittivity indicates the contribution of processes at grain boundaries to the polarization.

Key words: ferrites, complex impedance, dielectric constant, polarization, loss tangent.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i01/0089.html

DOI: https://doi.org/10.15407/mfint.36.01.0089

PACS: 61.05.cp, 81.16.-c, 81.20.Ka, 82.45.Fk, 84.37.+q, 84.60.Dn

Citation: B. K. Ostafiychuk, I. M. Gasyuk, L. S. Kaykan, V. V. Uhorchuk, P. P. Yakubovskiy, V. A. Tsap, and Yu. S. Kaykan, Temperature—Frequency Dependences of Dielectric Constants of Magnesium-Substituted Lithium Ferrite, Metallofiz. Noveishie Tekhnol., 36, No. 1: 89—102 (2014) (in Ukrainian)


REFERENCES
  1. V. G. Harris, N. S. Koon, C. M. Williams et al., IEEE Trans. Magn., 31, No. 6: 3473 (1996). Crossref
  2. S. V. Gnedenkov, S. L. Sinebryukhov, Vestnik DVO RAN, No. 5: 6 (2006) (in Russian).
  3. S. F. Mansour, Egypt. J. Solids, 28, No. 2: 263 (2005).
  4. Samy A. Rahman, Egypt. J. Solids, 29, No. 1: 131 (2006).
  5. B. K. Ostafiychuk, L. S. Kaykan, I. M. Hasyuk, and B. Ya. Deputat, Fizyka i Khimiya Tverdoho Tila, 7, No. 2: 202 (2006) (in Ukrainian).
  6. I. M. Hasyuk, I. M. Budzulyak, S. A. Halihuzova et al., Nanosistemi, Nanomateriali, Nanotehnologii, 4, No. 3: 613 (2006) (in Ukrainian).
  7. Z. B. Stoynov, B. M. Grafov, B. Savova-Stoynova, and V. V. Elkin, Elektrokhimicheskiy Impedans (Moscow: Nauka: 1991) (in Russian).
  8. M. N. Abdullah and A. N. Yusoff, J. Alloys Compd., 233: 129 (1996). Crossref
  9. S. Mandal, R. M. Rojas, J. M. Amarilla et al., Chem. Mater., 14: 1598 (2002). Crossref
  10. M. N. Abdullah and A. N. Yusoff, J. Mater. Sci., 32: 5817 (1997). Crossref
  11. A. V. Malyshev, V. V. Peshev, and A. M. Pritulov, Izv. Vuzov. Fizika, No. 7: 48 (2003) (in Russian).
  12. M. P. Bogdanovich, V. N. Varskoy, V. P. Lebedev et al., Izv. Vuzov. Fizika, No. 1: 58 (1983) (in Russian).
  13. B. K. Ostafiychuk, I. M. Hasyuk, L. S. Kaykan, V. V. Uhorchuk, and P. O. Sulym, Vostochno-Evropeyskiy Zhurnal Peredovykh Tekhnologiy, No. 6: 98 (2010) (in Ukrainian).