Mössbauer Spectroscopy of the Surface Layer of the Ti—6Al—4V Titanium Alloy Modified by Ultrasonic Impact Deformation

E. V. Pol’shin$^{1}$, M. O. Vasylyev$^{1}$, S. M. Voloshko$^{2}$, L. F. Yatsenko$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine

Received: 26.12.2013. Download: PDF

Using Mössbauer spectroscopy on the surface of Ti—6Al—4V titanium alloy after the ultrasonic impact deformation by the pane of hardened steel, iron-bearing phases such as TiO$_{2}$:Fe$^{2+}$, TiO$_{2}$:Fe$^{3+}$ (rutile), intermetallic FeTi compound, and $\alpha$-Fe are found. The concentration of Fe$^{2+}$ ions practically does not change, during the treatment time from 30 to 120 seconds. Rutile with Fe$^{2+}$ ions is the dominant phase. Its amount and, consequently, the thickness of rutile film on the surface of Ti—6Al—4V titanium alloy increases with treatment time increasing. The amount of other phases, including rutile with Fe$^{3+}$ ions, remains practically constant. As supposed, the other iron-containing phases such as TiO$_{2}$:Fe$^{3+}$, $\alpha$-Fe, and FeTi are present on the treated surface of the alloy in three positions: on the surface of the oxide film of rutile, as a fringing on rutile and alloy border, or under the layer of the rutile film. The intermetallic FeTi phase appears, probably, at the very beginning of the metal pane contact with the surface of the titanium alloy, and its amount does not change with time, because the rutile film spatially protects it. The reduction of the magnetic splitting in the spectrum of Ti—6Al—4V alloy in comparison with splitting in spectrum of ShKh15 steel is conditioned by the small sizes of iron particles, which remained on the processed surface due to adhesion.

Key words: Ti—6Al—4V titanium alloy, surface, ultrasonic impact deformation, Mössbauer spectroscopy.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i03/0343.html

DOI: https://doi.org/10.15407/mfint.36.03.0343

PACS: 43.35.+d, 62.20.Fk, 81.60.-b, 82.80.Ej

Citation: E. V. Pol’shin, M. O. Vasylyev, S. M. Voloshko, and L. F. Yatsenko, Mössbauer Spectroscopy of the Surface Layer of the Ti—6Al—4V Titanium Alloy Modified by Ultrasonic Impact Deformation, Metallofiz. Noveishie Tekhnol., 36, No. 3: 343—355 (2014) (in Russian)


REFERENCES
  1. M. A. Vasylyev, V. I. Beda, and P. A. Gurin, Fiziologicheskiy Otklik na Sostoyanie Poverkhnosti Metallicheskikh Dental'nykh Implantatov (Lviv: GalDent: 2010) (in Russian).
  2. M. A. Vasylyev, G. I. Prokopenko, and V. S. Filatova, Uspehi Fiziki Metallov, 5, No. 2: 345 (2005) (in Russian).
  3. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  4. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vib., 308: 855 (2007). Crossref
  5. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  6. M. A. Vasylyev, V. A. Tin'kov, S. M. Voloshko et al., Metallofiz. Noveishie Tekhnol., 34, No. 5: 687 (2012) (in Russian).
  7. M. O. Vasylyev, V. S. Filatova, L. F. Yatsenko, and D. V. Kozyrev, Metallofiz. Noveishie Tekhnol., 34, No. 6: 821 (2012) (in Ukrainian).
  8. A. S. M. Mahbubul Alam, Thesis (Boston University: 1966).
  9. P. P. Stampel, J. C. Travis, and M. J. Bielefeld, physica status solidi (a), 15: 181 (1973). Crossref
  10. V. K. Yarmarkin, S. P. Teslenko, and A. I. Knyazev, physica status solidi (a), 45: 63 (1978). Crossref
  11. C. E. Rodriguez Torres, A. F. Cabrera, M. B. Fernandez van Raap, and F. H. Sanchez, Physica B: Condens. Matter, 354: 67 (2004). Crossref
  12. L. Balcells, C. Frontera, and F. Sandiumenge, Appl. Phys. Lett., 89: 122501 (2006). Crossref
  13. E. N. Dulov, N. G. Ivojlov, and D. M. Khripunov, Pis'ma v ZhTF, 35: 1 (2009) (in Russian).
  14. S. L. Ruby and G. Shirane, Phys. Rev., 123: 1239 (1961). Crossref
  15. G. D. Bashkirov, R. A. Kurbatov, and I. N. Manapov, DAN SSSR, 173:407 (1967) (in Russian).
  16. J. F. Duncan and J. B. Metson, New Zealand J. Science, 25: 111 (1982).
  17. A. D. Bykov and E. A. Ovsyannikov, Zhurnal Fiz. Khimii, 57: 1028 (1983) (in Russian).
  18. Mössbauer Spectroscopy Applied to Inorganic Chemistry (Ed. G. J. Long) (New York: Plenum Publishing Corporation: 1987), vol. 2.
  19. Y. Chen, J. S. Williams, S. J. Campbell, and G. M. Wang, Mater. Sci. Eng. A, 271: 485 (1999). Crossref
  20. Sh. Zhou, G. Talut, K. K. Potzger, A. Shalimov, J. Grenzer, W. Skorupa, M. Helm, J. Fassbender, E. Cizmar, S. A. Zvyagin, and J. Wosnit, J. Appl. Phys., 103: 083907 (2008). Crossref
  21. G. Shirane, D. E. Cox, and S. L. Ruby, Phys. Rev., 125: 1158 (1962). Crossref
  22. S. Zhu,Yuzhi Li, Ch. Fan, D. Zhang, W. Liu, Zh. Sun, and Sh. Wei, Physica B, 364: 199 (2005). Crossref
  23. G. K. Wertheim, G. H. Wernik, and R. C. Sherwood, Solid State Commun., 7: 1399 (1969). Crossref
  24. S. H. Liou and C. L. Chien, J. Appl. Phys., 55: 1820 (1984). Crossref
  25. D. Khatamian and F. D. Manchester, Surf. Sci., 159: 381 (1985). Crossref
  26. R. Brenier, T. Capra, P. Thevenard, A. Perez, M. Treilleux, J. Rivory, J. Dupuy, and G. Guiraud, Phys. Rev. B, 41: 172 (1990).
  27. V. S. Rusakov, K. K. Katyrzhanov, and T. Eh. Turkebaev, Fizika Metallov i Metallovedenie, 104: 387 (2007) (in Russian).
  28. A. A. Cristóbal, E. F. Aglietti, J. M. Porto López, F. R. Sives, and R. C. Mercader, J. Eur. Ceram. Soc., 28: 2725 (2008). Crossref
  29. A. G. Betekhtin, Mineralogiya (Moscow: Gos. Izd. Geol. Lit.: 1950) (in Russian).
  30. S. Andersson, B. Collen, U. Ylenstierna, and A. Magneli, Acta Chem. Scand., 11: 1641 (1957). Crossref
  31. J. P. Wittke, J. Electrochem. Soc., 113: 193 (1966). Crossref
  32. S. Morup, J. A. Dumesic, and H. Topsoe, Applications of Mössbauer Spectroscopy (Ed. R. L. Cohen) (New York: Academic Press: 1980), vol. II, chap. 1.
  33. I. P. Suzdalev, Dinamicheskie Effekty v Gamma-Rezonansnoy Spektroskopii (Moscow: Atomizdat: 1979) (in Russian).