Formation of Structure and Phase Composition of Nanocrystalline CuNiAlFeCr Alloy by the Mechanical Alloying Method

O. I. Yurkova, V. V. Cherniavsky, O. I. Kravchenko

National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine

Received: 18.11.2013. Download: PDF

The synthesis of high-entropy nanocrystalline equiatomic CuNiAlFeCr alloy by mechanical alloying in a planetary ball mill is described. Alloying behaviour, phase formation and structure of five-component alloy are investigated by X-ray diffraction analysis and scanning electron microscopy. The effects of milling duration on the structure and morphology evolution are investigated. The formation of high-entropy CuNiAlFeCr alloy in the form of body-centred cubic solid solution with lattice parameter $a = 0.2892$ nm and crystallite size less than 20 nm is determined.

Key words: phase composition, structure, solid solution, high-entropy alloys, mechanical alloying.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i04/0477.html

DOI: https://doi.org/10.15407/mfint.36.04.0477

PACS: 06.60.Vz, 61.05.cp, 61.46.Hk, 64.30.Ef, 65.40.gd, 81.20.Ev

Citation: O. I. Yurkova, V. V. Cherniavsky, and O. I. Kravchenko, Formation of Structure and Phase Composition of Nanocrystalline CuNiAlFeCr Alloy by the Mechanical Alloying Method, Metallofiz. Noveishie Tekhnol., 36, No. 4: 477—490 (2014) (in Russian)


REFERENCES
  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S.-Y. Chang, J. Adv. Eng. Mater., 6: 299 (2004). Crossref
  2. J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Metall. Mater. Trans. A, 35: 2533 (2004). Crossref
  3. P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, J. Adv. Eng. Mater., 6: 74 (2004). Crossref
  4. J. W. Yeh, Ann. Chim. Sci. Mat., 31: 633 (2006). Crossref
  5. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, J. Adv. Eng. Mater., 10, No. 6: 534 (2008). Crossref
  6. J.-W. Yeh, Annales de Chimie: Science des Materiaux, 31: 633 (2006). Crossref
  7. J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S.-K. Chen, Mater. Sci. Forum, 560: 1 (2007). Crossref
  8. X. Yang, Y. Zhang, and P. K. Liaw, J. Procedia Engineering, 36: 292 (2012). Crossref
  9. A. Greer, J. Thermodynamics of Solids, 336: 303 (1993).
  10. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375-377: 213 (2004). Crossref
  11. S. Guo and C. T. Liu, Progr. Mater. Sci.: Materials International, 21: 433 (2011).
  12. K. B. Zhang, Z. Y. Fu, and J. Y. Zhang, J. Mater. Sci. Eng., 1: 1 (2011).
  13. S. Varalakshmi, G. A. Rao, M. Kamaraj, and B. S. Murty, J. Mater. Sci., 19: 5158 (2010). Crossref
  14. S. Varalakshmi, M. Kamaraj, and B. S. Murty, J. Metall. Mater. Trans. A, 10: 2703 (2010). Crossref
  15. Ya. S. Umanskiy, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Kristallografiya, Rentgenografiya i Ehlektronnaya Mikroskopiya (Moscow: Metallurgiya: 1982) (in Russian).
  16. C. Kittel, Introduction to Solid State Physics (New York: John Wiley and Sons: 1996).
  17. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (London: CRC Press: 1992). Crossref
  18. N. N.Greenwood and A. Earnshaw, Chemistry of the Elements (Oxford: Elsevier: 1997).
  19. J.-W. Yeh, S. Y. Chang, Y. D. Hong and et al., J. Mater. Chem. Phys., 103: 41 (2007). Crossref
  20. L. Shultz, Philos. Mag. B, 61: 453 (1990). Crossref
  21. C. Suryanarayana, Progr. Mater. Sci., 46: 1 (2001). Crossref
  22. F. R. de Boer, Cohesion in Metals (Amsterdam: North-Holland: 1988).
  23. A. Takeuchi and A. Inoue, Mater. Trans., 41: 1372 (2000). Crossref
  24. A. Takeuchi and A. Inoue, Mater. Sci. Eng. A, 304: 446 (2001). Crossref
  25. H. X. Sui, M. Zhu, M. Qi et al., J. Appl. Phys., 71: 2945 (1930). Crossref
  26. B. I. Huang, K. J. Perez, E. J. Lavemia, and M. J. Lutton, J. Nanostructured Mater., 7: 67 (1996). Crossref
  27. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston: PWS Publishing: 1994).