Electrochemical Synthesis of Composite Materials Based on the Nanoscale Powders of Tungsten Carbides in Salt Melt

I. A. Novoselova$^{1}$, E. P. Nakoneshnaja$^{1}$, N. A. Karpushin$^{2}$, V. N. Bykov$^{3}$, G. I. Dovbeshko$^{3}$, A. D. Rynder$^{3}$

$^{1}$V.I. Vernadsky Institute of General and Inorganic Chemistry, NAS of Ukraine, 32/34 Academician Palladin Ave., 03680 Kyiv, Ukraine
$^{2}$Special Design-Technological Bureau with Experimental Production at IGIC NAS of Ukraine, 38a Academician Vernadsky Blvd., 03680 Kyiv, Ukraine
$^{3}$Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine

Received: 21.11.2013; final version - 28.11.2013. Download: PDF

The features of the partial and joint electrodeposition of tungsten and carbon are studied at the platinum and glassy-carbon cathodes in NaCl—KCl—Na$_{2}$WO$_{4}$—NaPO$_{3}$—CO$_{2}$ chloride—oxide melt by the method of cyclic voltammetry. The fields of potentials, current densities and ratio of bath components are determined for the high-temperature electrochemical synthesis of composite powder mixtures on the base of tungsten carbides (WC and W$_{2}$C) with carbon nanomaterials (CNM), and single-phase powders of WC and W$_{2}$C. Physical and chemical properties, structural and morphological features of carbide products are studied by the methods of chemical analysis, XRD, SEM, TEM, BET, and Raman spectroscopy. Investigations show that it is possible to produce by the electrolytic method the composition mixtures of nanosize powders of tungsten carbides (WC and W$_{2}$C) with CNM of different composition, of hexagonal $\alpha$-WC nanofibres and nanorods (of 25—200 nm in diameter and about 10 $\mu$m in length) with the specific surface of about 40 m$^{2}$/g, which can be used as electrode materials for the different purposes of electrocatalysis.

Key words: nanoscale powders, carbon nanomaterials, tungsten carbide, salt melts, electrochemical synthesis.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i04/0491.html

DOI: https://doi.org/10.15407/mfint.36.04.0491

PACS: 33.20.Fb, 61.05.cp, 61.20.Qg, 68.37.-d, 81.05.Je, 82.45.Hk

Citation: I. A. Novoselova, E. P. Nakoneshnaja, N. A. Karpushin, V. N. Bykov, G. I. Dovbeshko, and A. D. Rynder, Electrochemical Synthesis of Composite Materials Based on the Nanoscale Powders of Tungsten Carbides in Salt Melt, Metallofiz. Noveishie Tekhnol., 36, No. 4: 491—508 (2014) (in Russian)


REFERENCES
  1. V. I. Shapoval, V. V. Malyshev, I. A. Novoselova, and Kh. B. Kushkhov, Russ. Chem. Rev., 64, No. 2: 125 (1995) (in Russian). Crossref
  2. I. A. Novoselova, V. V. Malyshev, V. I. Shapoval, Kh. B. Kushkov, and S. V. Devyatkin, Theoretical Foundations of Chemical Engineering, 31, No. 3: 286 (1997) (in Russian).
  3. I. A. Novoselova, S. V. Volkov, N. F. Oliinyk, and V. I. Shapoval, J. Mining and Metallurgy B, 39, No. 1–2: 281 (2003).
  4. I. L. Andrieux and G. Weiss, Bull. Soc. Chim. France, 15, No. 5: 598 (1948).
  5. J. Gomes and D. Barker, Method of Electrolytic Preparation of Tungsten Carbide, Patent USA No. 3589987 (JC3 B01 k1/00) (Published June 29, 1971).
  6. K. H. Stern, Electrodeposition of Refractory Metal Carbides, Patent USA No. 4430170 (MKU4 C25 D 3/66) (Published February 07, 1984).
  7. I. A. Novoselova, Vysokotemperaturnyy Elektrokhimicheskiy Sintez Karbidov Molibdena i Wol'frama pod Izbytochnym Davleniem Uglekislogo Gaza (High Temperature Electrochemical Synthesis of Molybdenum and Tungsten Carbides under Excessive Carbon Dioxide Pressure) (Thesis of Disser. for Candidate Chem. Sci.) (Kiev: V. I. Vernadsky Institute of General and Inorganic Chemistry, N.A.S.U.: 1988) (in Russian).
  8. A. A. Tishchenko, Vysokotemperaturnyy Elektrokhimicheskiy Sintez Tugoplavkikh Soedineniy na Osnove Vol'frama s Uglerodom i Borom (High Temperature Electrochemical Synthesis of the Refractory Compounds Based on Tungsten with Carbon and Boron), (Thesis of Disser. for Candidate Chem. Sci.) (Kyiv: V. I. Vernadsky Institute of General and Inorganic Chemistry N.A.S.U.: 1992) (in Russian).
  9. Kh. B. Kushkhov, M. N. Adamokova, and V. A. Kvashin, Sposob Polucheniya Nanodispersnogo Poroshka Karbida Vol'frama (Method of Production of Nanodisperse Powders of Tungsten Carbide), Patent Russia S25S5/04 V82I3/00 S01V31/34 (Published July 21, 2008) (in Russian).
  10. Vol'fram. Metody Analiza (Tungsten. Methods of Analysis), GOST USSR 14339.082, GOST USSR 14339.5-082 (in Russian).
  11. V. P. Samoylov, Metody Analiza Tugoplavkikh Soedineniy (Methods of Analysis of Refractory Compounds) (Moscow: Nauka: 1974) (in Russian).
  12. V. I. Shapoval, Kinetika Elektrodnykh Protsessov s Sopryazhennymi Kislotno-osnovnymi Reaktsiyami v Rasplavlennykh Solyakh (Kinetics of Electrode Processes with Conjugate Reactions of Acid-Alkaline Type in Molten Salts) (Thesis of Disser. for Doctor of Chemical Sciences) (Kyiv: V. I. Vernadsky Institute of General and Inorganic Chemistry, N.A.S.U.: 1975) (in Russian).
  13. I. A. Novoselova, V. V. Malyshev, A. E. Finadorin, and V. I. Shapoval, Zhurnal Neorganicheskoi Khimii, 40, No. 9: 1438 (1995) (in Russian).
  14. I. A. Novoselova, N. F. Oliynyk, and S. V. Volkov, Nanosystems, Nanomaterials, Nanotechnologies, 3, No. 3: 465 (2005) (in Russian).
  15. A. N. Baraboshkin, Elektrokristallizatsiya Metallov v Rasplavlennykh Solyakh (Electrocrystallization of Metals in Molten Salts) (Moscow: Nauka: 1976) (in Russian).
  16. K. D. Litasov, A. Shatskiy, Y. Fei, A. Suzuki, E. Ohtani, and K. Funakoshi, J. Appl. Phys., 108, No. 5: 053513 (2010). Crossref
  17. A. Kromka, J. Janik, A. Satka, and J. Pavlov, Acta Physica Slovaca, 51, No. 6: 359 (2001).