Simulation of Atomic-Bonds’ Break in Linear Monatomic Carbon Chain within the Wide Temperature Range

S. O. Kotrechko$^{1}$, T. I. Mazilova$^{2}$, I. M. Mikhailovskij$^{2}$, G. P. Zimina$^{1}$, E. V. Sadanov$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1, Akademicheskaya Str., 61108 Kharkov, Ukraine

Received: 19.12.2013; final version - 27.03.2014. Download: PDF

Based on the results of molecular-dynamics simulation of tension of linear carbon atomic chains (CACs), the feature of failure of these objects, which consists in the necessity to realize correlated fluctuations of critical displacements of the neighbouring atoms, is established. A statistical criterion of fracture of the 1D chains is proposed, which, unlike conventional criteria, accounts for this feature. Presence of three different regions (in ‘strength— temperature$^{1/2}$’ coordinates), namely, linear and two non-linear (low- and high-temperature) ones, is established. As shown, such features of the temperature influence on CACs strength are caused by the behaviour of a temperature dependence of the atomic-displacements’ variance.

Key words: monatomic carbon chains, nanoclusters, ultimate strength, MD-simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i05/0633.html

DOI: https://doi.org/10.15407/mfint.36.05.0633

PACS: 34.20.Cf, 36.40.Qv, 61.46.-w, 62.25.Jk, 62.25.Mn, 63.22.Kn, 81.07.-b

Citation: S. O. Kotrechko, T. I. Mazilova, I. M. Mikhailovskij, G. P. Zimina, and E. V. Sadanov, Simulation of Atomic-Bonds’ Break in Linear Monatomic Carbon Chain within the Wide Temperature Range, Metallofiz. Noveishie Tekhnol., 36, No. 5: 633—647 (2014) (in Russian)


REFERENCES
  1. M. Bianchetti, P. F. Bounsante, F. Ginnelli, H. E.Roman, R. A. Broglia, and F. Alasia, Phys. Rep., 357: 459 (2002). Crossref
  2. F. J. Riberto, D. J. Roundy, and M. L. Cohen, Phys. Rev. B, 65: 153401 (2002). Crossref
  3. N. D. Lang and P. Avouris, Nano Lett., 3: 737 (2003). Crossref
  4. V. I. Artyukhov and M. Liu, arXiv:1302.7250v2 [cond-mat.mtrl-sci], June 1, 2013.
  5. Y. Wang, X.-J. Ning, Z.-Z. Lin, P. Li, and J. Zhuang, Phys. Rev. B, 76: 165423 (2007). Crossref
  6. K. Nishioka, S. Nakamura, T. Shimamoto, and H. Fujiwara, Scr. Metallurgica, 14: 497 (1980). Crossref
  7. V. L. Gilyarov and A. B. Pahomov, Fizika Tverdogo Tela, 23, No. 6: 1569 (1981) (in Russian).
  8. V. L. Gilyarov, Fizika Tverdogo Tela, 25, No. 3: 944 (1983) (in Russian).
  9. Ch. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321: 385 (2008). Crossref
  10. I. M. Mikhailovskij, E. V. Sadanov, S. Kotrechko, V. Ksenofontov, and T. I. Mazilova, Phys. Rev. B, 87: 045410 (2013). Crossref
  11. S. Kotrechko, I. Mikhailovskij, T. Mazilova, and O. Ovsjannikov, Key Engineering Materials, 592–593: 301 (2014).
  12. S. Bahn and K. W. Jacobsen, Phys. Rev. Lett., 87: 266101 (2001). Crossref
  13. E. V. Sadanov, T. I. Mazilova, I. M. Mikhailovskij, V. A. Ksenofontov, and A. A. Mazilov, Phys. Rev. B, 84: 035429 (2011). Crossref
  14. T. Ragab and C. Basaran, J. Electronic Packaging, 133: 020903 (2011). Crossref
  15. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter, 14: 783 (2002). Crossref
  16. T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Phys. Rev. B, 65: 235430 (2002). Crossref
  17. T. I. Mazilova, S. Kotrechko, E. V. Sadanov, V. A. Ksenofontov, and I. M. Mikhailovskij, Int. J. Nanoscience, 9, No. 3: 151 (2010). Crossref
  18. W. Stiller, Uravnenie Arreniusa i Neravnovesnaya Kinetika (Arrhenius Equation and Non-Equilibrium Kinetics) (Moscow: Mir: 2000) (in Russian).
  19. G. Leibfried, Microscopicheskaya Teoriya Mekhanicheskikh i Teplovykh Svoystv Kristallov (Microscopic Theory of the Mechanical and Thermal Properties of Crystals) (Moscow: GIFML: 1963) (in Russian).
  20. C. G. Rodrigues, J. N. Teixeira Rabelo, and V. I. Zubov, Brazilian Journal of Physics, 36, No. 2B: 592 (2006). Crossref