Driving Force of Metals Hydrogenation Process. ІІ. As Cast Titanium

A. A. Shkola

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 25.12.2013; final version - 17.04.2014. Download: PDF

Inequalities $\Delta Gp > 0$ and $\Delta S > 0$ are the general conditions of fundamental realization of hydrogenation’ process in straight direction in the closed system. Using the Onsager’s principles of thermodynamics of the nonequilibrium (irreversible) processes, it is possible to distinguish some basic potentials, which promote the process or hinder it. Significance of these potentials at different stages of advancement of diffusion front through the surface layer of the sample is not identical. From the experimental data ($Р$, $Т$, $m_{H}$, $\tau$), the estimated effective factor of diffusion $D_{еf}$, and volume $\Delta V_{і}$ filled by gas during $\Delta \tau_{i}$, the module of compression of hydrogen gas, ${\partial \mu}/{\partial \rho}$ , is calculated. Reduction of this module increases the gradient of concentration, which is formed within the sample at specified internal stress. Strength of relaxation becomes higher. Dependences of ${\partial \mu}/{\partial \rho}$ on both the hydrogenation’ process duration $\tau$ and the hydrogen-penetration depth $h$ for various states of Ti are constructed. As a matter of fact, the values of ${\partial \mu}/{\partial \rho} = f(\tau, h)$ and gradient of elastic strength $\Delta \sigma(T)$ appear to be competitive during the process. The dependences of ${\partial \mu}/{\partial \rho} = kT/\rho$ against reciprocal temperature allow estimating the activation energy of elastic strength relaxation. The H concentrations in cast and as-annealed Ti reach about $C_{H} \leq 4%$ mass. that corresponds to atomic ratio ТіH$_{2-\delta}$ ($\delta \geq 0.05$).

Key words: cast titanium, metals hydrogenation, entropy production, module of compression of gas.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i05/0689.html

DOI: https://doi.org/10.15407/mfint.36.05.0689

PACS: 61.66.Dk, 61.72.Ww, 65.50.-m, 82.40.-g, 82.40.Bj

Citation: A. A. Shkola, Driving Force of Metals Hydrogenation Process. ІІ. As Cast Titanium, Metallofiz. Noveishie Tekhnol., 36, No. 5: 689—704 (2014) (in Ukrainian)


REFERENCES
  1. S. de Groot and P. Mazur, Neravnovesnaya Termodinamika (Moscow: Mir: 1964) (Russian translation).
  2. Yu. L. Klimontovich, Statisticheskaya Fizika (Moscow: Nauka: 1982) (in Russian).
  3. G. A. Casas, F. D. Nobre, and E. M. F. Curado, Phys. Rev. E, 86, No. 6: 061136 (2012). Crossref
  4. K. Denbigh, Termodinamika Statsionarnykh Neobratimykh Protsessov (Moscow: Izd-vo Inostr. Lit.: 1954) (Russian translation).
  5. B. Cleuren and C. Van Len Broeck, Phys. Rev. E, 74, No. 3: 021117 (2006). Crossref
  6. J. Meixner, Zeitschrift für Physik, Bd. 149, H. 5: 624 (1957).
  7. P. Glansdorff and I. Prigogine, Termodinamicheskaya Teoriya Struktury, Ustoychivosti i Fluktuatsiy (Moscow: URSS: 2003) (Russian translation).
  8. A. A. Shkola, Metallofiz. Noveishie Tekhnol., 35, No. 5: 697 (2013) (in Russian).
  9. G. F. Kobzenko and A. A. Shkola, Metallofizika, 11, No. 6: 71 (1989) (in Russian).
  10. L. Onsager and S. Machlup, Phys. Rev., 91, No. 6: 1505 (1953). Crossref
  11. S. Machlup and L. Onsager, Phys. Rev., 91, No. 6: 1512 (1953). Crossref
  12. H. Wipf, Vodorod v Metallakh (Eds. G. Alefeld and J. Völkl) (Moscow: Mir: 1981), vol. 2, p. 327 (Russian translation).
  13. J. Völkl, Berichte der Bunsengesellschaft für Physikalische Chemie, 76, No. 8: 797 (1972).
  14. A. A. Shkola, Osoblyvosti Pohlynannya Vodnyu Polikrystalichnym Tytanom ta Splavamy (Autoref. Diss. … Cand. Tekhn. Sci.) (Kiev: Institute for Metal Physics, N.A.S. of Ukraine: 1994) (in Ukrainian).
  15. A. A. Shkola, Metallofiz. Noveishie Tekhnol., 30, No. 12: 1667 (2008) (in Russian).
  16. S. S. Sidhu, L. Heaton, and D. D. Zauberis, Acta Crystallogr., 9, No. 8: 607 (1956). Crossref
  17. H. L. Yakel, Acta Crystallogr., 11, No. 1: 46 (1958). Crossref
  18. I. A. Birger, Ostatochnye Napryazheniya (Moscow: Mashgiz: 1963) (in Russian).
  19. A. D. Makarov, Optimizatsiya Protsessov Rezaniya (Moscow: Mashinostroenie: 1976) (in Russian).
  20. S. P. Timoshenko and J. Gudier, Teoriya Uprugosti (Moscow: Nauka: 1975) (Russian translation).
  21. A. A. Shkola, Metallofiz. Noveishie Tekhnol., 28, No. 6: 837 (2006) (in Russian).
  22. V. A. Lomakin, Teoriya Uprugosti Neodnorodnykh Tel (Moscow: Izd-vo MGU: 1976) (in Russian).
  23. I. I. Novikov, Teoriya Termicheskoy Obrabotki Metallov (Moscow: Metallurgiya: 1986) (in Russian).
  24. B. A. Nesterenko and V. G. Lyapin, Fazovye Perekhody na Svobodnykh Granyakh v Mezhfaznykh Granitsakh v Poluprovodnikakh (Kiev: Naukova Dumka: 1990) (in Russian).
  25. A. I. Karasev, Teoriya Veroyatnostey i Matematicheskaya Statistika (Moscow: Statistika: 1977) (in Russian).
  26. B. S. Bokstein and S. Z. Bokstein, Termodinamika i Kinetika Diffuzii v Tverdykh Telakh (Moscow: Metallurgiya:1974) (in Russian).
  27. V. N. Bugaev and V. A. Tatarenko, Vzaimodeystvie i Raspredelenie Atomov v Splavakh Vnedreniya na Osnove Plotnoupakovannykh Metallov (Kiev: Naukova Dumka: 1984) (in Russian).
  28. L. Bodneva and A. A. Lundich, ZhETF, 135, No. 6: 1142 (2009) (in Russian).
  29. M. A. Krivoglaz and A. A. Smirnov, Uspekhi Fiz. Nauk, LV, No. 3: 391 (1955) (in Russian). Crossref
  30. M. Michel, G. Mahler, and J. Gemmer, Phys. Rev. Lett., 95, No. 18: 180602 (2005). Crossref
  31. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, Phys. Rev. E, 85, No. 6-7: 061107 (2012). Crossref
  32. Y. Dong, Phys. Rev. E, 86, No. 6-1: 062101 (2012). Crossref
  33. G. Martynov, Teoreticheskaya i Matematicheskaya Fizika, 156, No. 3: 454 (2008) (in Russian). Crossref