Peculiarities of the HDDR Processes at Low Hydrogen Pressures in Nd—Fe—B System Alloys

I. I. Bulyk$^{1}$, А. M. Trostianchyn$^{1}$, V. V. Burkhovetskyi$^{2}$, V. Yu. Tarenkov$^{2}$

$^{1}$Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine

Received: 22.04.2013; final version - 05.06.2014. Download: PDF

The features of hydrogenation, disproportionation, desorption, recombination (HDDR) processes in Nd$_{11.8}$Fe$_{82.3}$B$_{5.9}$ and Nd$_{16}$Fe$_{76}$B$_{8}$ alloys under hydrogen pressure of 0.05 MPa in the temperature range of 20—840°C are studied by means of differential thermal analysis (DTA), X-ray diffraction analysis and scanning electron microscopy (SEM) methods. Superfine Nd$_{2}$Fe$_{14}$B phase with up 200 nm thickness lamellar microstructure is formed in some alloys’ areas after solid HDDR under low hydrogen pressure. The principal possibility of fine-grained magnetic-anisotropy microstructure formation in Nd—Fe—B system alloys is shown in the cases of presence of small amount of initial ferromagnetic Nd$_{2}$Fe$_{14}$B phase among disproportionated products.

Key words: hydrogen initiated phase transformations, magnetic anisotropy, ferromagnetic alloys, Nd$_{2}$Fe$_{14}$B, hydrogen technology.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i07/0903.html

DOI: https://doi.org/10.15407/mfint.36.07.0903

PACS: 61.72.Ff, 75.30.Gw, 75.50.Tt, 75.50.Ww, 75.75.Cd, 81.07.Wx, 81.40.Rs

Citation: I. I. Bulyk, А. M. Trostianchyn, V. V. Burkhovetskyi, and V. Yu. Tarenkov, Peculiarities of the HDDR Processes at Low Hydrogen Pressures in Nd—Fe—B System Alloys, Metallofiz. Noveishie Tekhnol., 36, No. 7: 903—916 (2014) (in Ukrainian)


REFERENCES
  1. R. Coehoorn, D. B. DeMooji, and D. DeWaard, J. Magn. Magn. Mater., 80: 101 (1989). Crossref
  2. G. C. Hadjipanayis and W. Gong, J. Appl. Phys., 64: 5559 (1988). Crossref
  3. S. Liu, B. Cui, S. Bauser, R. Leese, J. S. Hilton, R. H. Yu, A. Kramp, J. Dent, and D. Miles, Proc. 17th Int. Workshop on Rare Earth Magnets and Their Applications (August 18–22, 2002, Newark, Delaware, U.S.A.) (Eds. G. C. Hadjipanayis and M. J. Bonder) (Princeton, N.J.: Rinton Press: 2002), p. 939.
  4. O. Gutfleisch, K. Khlopkov, A. Teresiak, K.-H. Müller, G. Drazic, C. Mishima, and Y. Honkura, IEEE Trans. Magn., 39: 2926 (2003). Crossref
  5. Y. Honkura, C. Mishima, N. Hamada, G. Drazic, and O. Gutfleisch, J. Magn. Magn. Mater., 290–291: 1282 (2005). Crossref
  6. K. Güth, T. G. Woodcock, L. Schultz, and O. Gutfleisch, J. Acta Mater., 59: 2029 (2011). Crossref
  7. C. Mishima, N. Hamada, H. Mitari, and Y. Honkura, Proc. 16th Int. Workshop on Rare Earth Magnets and Their Applications (Sendai, Japan: 2000), p. 873.
  8. Hae-Woong Kwon and Jung-Hwan Kim, J. Magn. Magn. Mater., 312: 222 (2006). Crossref
  9. Y. Honkura, N. Hamada, and C. Mishima, US Patent 7, 138, 018 (2006).
  10. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Patent of Ukraine 96810 (2011) (in Ukrainian).
  11. I. I. Bulyk, V. V. Panasyuk, and A. M. Trostyanchyn, Patent of Ukraine 96811 (2011) (in Ukrainian).
  12. I. I. Bulyk, A. M. Trostyanchyn, and P. Ya. Lyutyj, Fizyko-Khimichna Mekhanika Materialiv, 48, No. 3: 53 (2012) (in Ukrainian).
  13. I. I. Bulyk, R. V. Denys, V. V. Panasyuk et al., Fizyko-Khimichna Mekhanika Materialiv, 37, No. 4: 15 (2001) (in Ukrainian).
  14. L. G. Akselrud, Yu. N. Grin, and P. Yu. Zavalij, Col. Abs. 12th European Crystallographic Meeting (Moscow: 1989), vol. 3, p. 155.
  15. http://www.ccp14.ac.uk/solution/indexing/
  16. J. Rodriguez-Carvajal, Newsletter, 26: 12 (2001).
  17. www.sigmaaldrich.com
  18. N. Cannesan and I. R. Harris, Bonded Magnets. NATO Science Series: II. Mathematics, Physics and Chemistry (Ed. G. C. Hadjipanayis) (Dordrecht: Kluwer Academic Publishers: 2003), vol. 118, p. 13. Crossref