Electrical Conduction of Graphene Doped with Nitrogen

S. P. Repetskyy, O. V. Tretyak, I. G. Vyshyvana, V. A. Skotnykov, A. A. Yatsenyuk

Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine

Received: 15.05.2014. Download: PDF

Based on the tight-binding model, the electronic structure of graphene doped with N atoms is investigated. Wave function of $2s$-, $2p$-states of non-interacting neutral C atoms are chosen. Within the calculation of the Hamiltonian matrix elements, the first three co-ordination spheres are taken into account. As found, the zones’ hybridization leads to a splitting of the energy spectrum of electrons in the Fermi energy region. With increasing of nitrogen-atoms’ concentration, the conductivity of graphene decreases. As the nitrogen atoms concentration increases, the electron density of states at the Fermi level increases; so, decreasing of conductivity is caused by much greater decrease of relaxation time of electron states.

Key words: graphene doped with nitrogen, electron energy spectrum, electrical conduction, tight-binding model.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i08/1015.html

DOI: https://doi.org/10.15407/mfint.36.08.1015

PACS: 71.15.Ap, 71.20.Tx, 71.27.+a, 72.10.-d, 72.80.Vp, 73.22.Pr, 81.05.ue

Citation: S. P. Repetskyy, O. V. Tretyak, I. G. Vyshyvana, V. A. Skotnykov, and A. A. Yatsenyuk, Electrical Conduction of Graphene Doped with Nitrogen, Metallofiz. Noveishie Tekhnol., 36, No. 8: 1015—1022 (2014) (in Ukrainian)


REFERENCES
  1. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 73: 241402(R) (2006). Crossref
  2. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 75: 245401 (2007). Crossref
  3. S. P. Repetskii and T. D. Shatniy, Teoreticheskaya i Matematicheskaya Fizika, 131: 456 (2002) (in Russian). Crossref
  4. S. P. Repetskiy and I. G. Vyshyvana, Metallofiz. Noveishie Tekhnol., 26, No. 7: 887 (2004) (in Russian).
  5. S. P. Repetskii and I. G. Vyshivanaya, The Phys. Met. Metallogr., 99, No. 6: 558 (2005).
  6. S. P. Repetsky and I. G. Vyshivanaya, Metallofiz. Noveishie Tekhnol., 29, No. 5: 587 (2007) (in Russian).
  7. S. P. Repets'kyy, I. G. Vyshyvana, V. V. Shastun, and A. F. Mel'nyk, Metallofiz. Noveishie Tekhnol., 33, No. 4: 425 (2011) (in Russian).
  8. S. P. Repetskii, I. G. Vyshivanaya, and D. K. Cheshkovskii, The Phys. Met. Metallogr., 113: 213 (2012). Crossref
  9. S. P. Repetskyi, V. A. Skotnykov, V. V. Shastun, D. K. Cheshkivskyi, and A. A. Yatsenyuk, Metallofiz. Noveishie Tekhnol., 36, No. 4: 547 (2014) (in Ukrainian). Crossref
  10. J. C. Slater and G. F. Koster, Phys. Rev., 94, No. 6: 1498 (1954). Crossref
  11. S. Kim, I. Jo, D. C. Dillen, D. A. Ferrer, B. Fallahazad, Z. Yao, S. K. Banerjee, and E. Tutuc, Phys. Rev. Lett., 108: 116404 (2012). Crossref
  12. A. R. Ubbelohde and F. A. Lewis, Grafit i Ego Kristallicheskie Soedineniya (Graphite and Its Crystal Compounds) (Moscow: Mir: 1965) (Russian translation).