Features of Phase Formation at Controlled Hydrogenation and Dehydrogenation of Titanium by Different Methods

O. I. Dekhtyar$^{1}$, O. M. Ivasishin$^{1}$, D. Yu. Kovalev$^{2}$, O. M. Korduban$^{1}$, V. K. Prokudina$^{2}$, V. I. Ratnikov$^{2}$, D. G. Savvakin$^{1}$, A. Ye. Sychev$^{2}$, M. M. Gumenyak$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Institute of Structural Macrokinetics and Materials Science RAS, 8 Academician Osipyan Str., 142432 Chernogolovka, Russia

Received: 28.01.2014; final version - 26.06.2014. Download: PDF

The comparative investigations of phase transformations, which take place under the titanium hydrogenation, content of impurities, and phase composition of titanium hydrides obtained by means of two different techniques are carried out in this study. The first technique is a traditional hydrogenation of titanium sponge by the burn heating within the hydrogen atmosphere. Hydrides’ production by the second technique is performed by the self-propagating high-temperature synthesis (SHS). Temperature—pressure regimes securing the single-phase titanium hydrides with a homogeneous hydrogen distribution in a bulk, which are obtained by the titanium hydrogenation in stationary conditions and by SHS, are found. As determined, the sequence of phase transformations is similar for both hydrogenation techniques under increase and decrease of hydrogen concentration in titanium. Titanium hydrogenation by SHS technique principally differs from traditional one by the more rapid behaviour of the process. As shown, the oxygen content in hydride powders, including condition of surface oxygen films, influences on kinetics of the titanium-hydride lattice-parameter change and on differences under heating of SHS-hydride and of hydride obtained by traditional technique.

Key words: phase transformation, kinetics of transformations, hydrogenation, dehydrogenation, titanium hydride, self-propagating high-temperature synthesis (SHS).

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i09/1153.html

DOI: https://doi.org/10.15407/mfint.36.09.1153

PACS: 61.43.Gt, 61.72.S-, 64.70.Kd, 66.30.jp, 68.55.Nq, 81.05.Bx, 81.20.Ev

Citation: O. I. Dekhtyar, O. M. Ivasishin, D. Yu. Kovalev, O. M. Korduban, V. K. Prokudina, V. I. Ratnikov, D. G. Savvakin, A. Ye. Sychev, and M. M. Gumenyak, Features of Phase Formation at Controlled Hydrogenation and Dehydrogenation of Titanium by Different Methods, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1153—1169 (2014) (in Russian)


REFERENCES
  1. A. A. Il'yin, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Vodorodnaya Tekhnologiya Titanovykh Splavov (Moscow: MISiS: 2002) (in Russian).
  2. K. Konashi and M. Yamawaki, Adv. Sci. Technol., 73: 51 (2010). Crossref
  3. O. M. Ivasishin and D. G. Savvakin, Key Engineering Mater., 436: 113 (2010). Crossref
  4. O. M. Ivasishin, D. G. Savvakin, and M. M. Humenyak, Metallofiz. Noveishie Tekhnol., 33, No. 7: 899 (2011) (in Russian).
  5. V. A. Livanov, A. A. Bukhanova, and B. A. Kolachev, Vodorod v Titane (Moscow: Gosudarstvennoye Nauchno-Tekhnicheskoye Izdatelstvo po Chernoy i Tsvetnoy Metallurgii: 1962) (in Russian).
  6. A. S. Rogachev and A. S. Mukas'yan, Gorenie dlya Sinteza Materialov: Vvedenie v Strukturnuyu Makrokinetiku (Moscow: Fizmatlit: 2012) (in Russian).
  7. V. I. Ratnikov, I. P. Borovinskaya, and V. K. Prokudina, Int. J. Self-Prop. High-Temp. Synth., 15, No. 2: 193 (2006).
  8. G. Stepura, V. Rosenband, and A. Gany, Proc. III Eur. Combustion Meeting ECM 2007 (Israel: 2007), p. 1.
  9. A. G. Merzhanov, I. P. Borovinskaya, V. I. Ponomarev, I. O. Khomenko, Yu. V. Zanevskiy, S. P. Chemenko, L. P. Smykov, and G. A. Cheremukhina, Doklady RAN, 328, No. 1: 72 (1993) (in Russian).
  10. D. Yu. Kovalev, V. K. Prokudina, V. I. Ratnikov, and V. I. Ponomarev, Int. J. Self-Prop. High-Temp. Synth., 19, No. 4: 253 (2010). Crossref
  11. O. M. Ivasishin, V. T. Cherepin, V. N. Kolesnik, and M. M. Humenyak, Pribory i Tekhnika Eksperimenta, No. 3: 147 (2010) (in Russian).
  12. V. A. Garmata, A. N. Petrun'ko, N. V. Galitskiy, Yu. G. Olesov, and R. A. Sandler, Titan (Moscow: Metallurgiya: 1983) (in Russian).
  13. V. I. Ratnikov, V. K. Prokudina, I. P. Borovinskaya, and A. G. Merzhanov, Sposob Polucheniya Gidrida Titana i Ustroystvo dlya Ego Osushchestvleniya. Patent RF No. 2385837. C01B 6/02 / No. 2008107172/15 (Claimed 28.02.2008. Published 10.04.2010, B.I. No. 10) (in Russian).
  14. O. M. Ivasishin, D. G. Savvakin, V. I. Bondarchuk, and M. M. Gumenyak, Key Engineering Mater., 520: 121 (2012). Crossref
  15. H. Liu, P. He, J. C. Feng, and J. Cao, Int. J. Hydrogen Energy, 34: 3018 (2009). Crossref
  16. A. A. Smirnov, Ukr. Fiz. Zhurn., 37, No. 8: 1188 (1992) (in Russian).