Computer Modelling of Mechanism of Formation of Localized Synergetic Defect Substructures under Plastic Deformation of Metal Nanocrystals

O. S. Gatsenko$^{1}$, O. E. Zasymchuk$^{1}$, P. O. Tesel’ko$^{2}$, S. G. Stirenko$^{3}$, Yu. G. Gordienko$^{3}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
$^{3}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine

Received: 06.08.2013; final version - 28.08.2014. Download: PDF

Computer modeling of plastic deformation of f.c.c.-metal (Al, Cu, Pt) nanocrystals is performed by the molecular dynamics method using the new techniques for high-performance computing on the basis of ‘scientific gateway’ (Science Gateway) and WS-PGRADE/gUSE technologies, ‘service grid’ and ‘desktop grid’ infrastructures. The new features of evolution are revealed for irregular atomic arrangements (i.e. so-called atom—vacancy states), which arise in process of monotonic uniaxial load of nanocrystals in cubic orientation. As shown, the collective restructuring in the ensemble of atom—vacancy states leads to significant changes of the average stress values. As a result of the evolution, the collective self-organized zones of strain localization appear as quasi-periodic bands with various quantitative parameters for different metals (thickness, period, time of formation), but with the same qualitative characteristics (non-crystallographic orientation, evolution, slope, through-bulk arrangement, outcropping). The simulated bands with nonuniform stress distribution are treated as precursors of the correlated movement of groups of atom—vacancy (or highly excited) states, i.e., precursors of inhomogeneous localized (hydrodynamic) plastic flow in channels at low (nanometre) scale level. With the further evolution, these bands may be the carriers of the hydrodynamic deformation modes at the micro- and macroscale levels, which have been observed in the experiments by various research groups. The simulation of results of X-ray analysis shows that the diffraction peaks decrease and shift with increase of plastic strain that indicates the presence of point defects. Thus, in a qualitative sense, we can conclude that the interpretation of the irregular atomic arrangements in this work as the point defects with the properties of the atom—vacancy states is correct. On the basis of these results and their discussion, it is concluded that plastic deformation of nanocrystals of f.c.c. metals under conditions, when dislocation slip is impossible, is realized by the localized hydrodynamic flow of matter in channels with loosely packed noncrystalline (liquid-like) structure by means of generation of metastable point defects of atom—vacancy type, their evolution and self-organization in the localized bands at the larger scales.

Key words: plastic deformation, mass transfer, defect substructures, nanocrystals, Synergetics, computer modeling, X-ray analysis.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i09/1207.html

DOI: https://doi.org/10.15407/mfint.36.09.1207

PACS: 61.43.Bn, 61.72.Bb, 61.72.J-, 62.20.Fq, 62.25.Mn, 81.40.Lm, 83.50.Ha

Citation: O. S. Gatsenko, O. E. Zasymchuk, P. O. Tesel’ko, S. G. Stirenko, and Yu. G. Gordienko, Computer Modelling of Mechanism of Formation of Localized Synergetic Defect Substructures under Plastic Deformation of Metal Nanocrystals, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1207—1224 (2014) (in Ukrainian)


REFERENCES
  1. E. E. Zasimchuk and L. I. Markashova, Mater. Sci. Eng. A, 127, No. 1: 33 (1990). Crossref
  2. Yu. G. Gordienko, R. G. Gontareva, J. S. Schreiber, E. E. Zasimchuk, and I. K. Zasimchuk, Adv. Eng. Mater., 8, No. 10: 957 (2006). Crossref
  3. E. E. Zasimchuk, Yu. G. Gordienko, R. G. Gontareva, and I. K. Zasimchuk, J. Mater. Eng. Perf., 12, Iss. 10: 69 (2003).
  4. Yu. G. Gordienko, E. E. Zasimchuk, and R. G. Gontareva, J. Mater. Sci. Lett., 22, No.3: 241 (2003). Crossref
  5. Yu. G. Gordienko, E. E. Zasimchuk, R. Gontareva, and V. Alexandrov, Int. J. Eng. Simul., 1, No. 3: 2 (2000).
  6. P. V. Kuznetsov, I. V. Petrakova, Y. G. Gordienko, E. E. Zasimchuk, and V. L. Karbovskii, Phys. Mesomech., 12, No. 1: 85 (2009). Crossref
  7. E. E. Zasimchuk, Yu. G. Gordienko, L. Markashova, and T. Turchak, J. Mater. Eng. Perf., 18, Iss. 7: 947 (2009). Crossref
  8. E. Zasimchuk, L. Markashova, O. Baskova, T. Turchak, N. Chausov, V. Hutsaylyuk, and V. Berezin, J. Mater. Eng. Perf., 22, Iss. 11: 3421 (2013). Crossref
  9. E. E. Zasimchuk, L. I. Markashova, T. V. Turchak, N. G. Chausov et al., Fizicheskaya Mezomekhanika, 12, No. 2: 77 (2009) (in Russian).
  10. N. Chausov, E. Zasimchuk, L. Markashova, V. Vil'deman et al., Tekhnicheskaya Diagnostika i Nerazrushayushchiy Kontrol', 4: 54 (2008) (in Russian).
  11. E. Zasimchuk, Yu. Gordienko, L. Markashova, and T. Turchak, J. Mater. Eng. Perf., 18, Iss. 7: 947 (2009). Crossref
  12. E. Eh. Zasimchuk, Yu. G. Gordienko, V. I. Prudnikova, and T. V. Turchak, Metallofiz. Noveishie Tekhnol., 27, No. 5: 595 (2005) (in Russian).
  13. Yu. G. Gordienko and E. E. Zasimchuk, Philos. Mag. A, 70, No. 1: 99 (1994). Crossref
  14. V. E. Panin, V. E. Egorushkin, Yu. A. Khon, and T. F. Elsukova, Izv. Vuzov. Fizika, 24, No. 12: 5 (1982) (in Russian).
  15. V. E. Egorushkin, V. E. Panin, E. V. Savushkin, and Yu. A. Khon, Izv. Vuzov. Fizika, 30, No. 1: 9 (1987) (in Russian).
  16. S. Flach and A. V. Gorbach, Phys. Reports, 467: 1 (2008). Crossref
  17. V. I. Dubinko, P. A. Selyshchev, and J. F. R. Archilla, Phys. Rev. E, 83, No. 4: 041124 (2011). Crossref
  18. O. Gatsenko, L. Bekenev, E. Pavlov, and Yu. G. Gordienko, Comp. Sci., 14, No. 1: 27 (2013). Crossref
  19. P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K. Karoczkai, and I. Marton, J. Grid Comp., 9, No. 4: 479 (2012).
  20. O. Baskova, O. Gatsenko, and Yu. G. Gordienko, Proc. Cracow Grid Workshop'10 (2011, Cracow, Poland), p. 234.
  21. Y. Gordienko, L. Bekenev, O. Baskova, O. Gatsenko, E. Zasimchuk, and S. Stirenko, Proc. of 6th International Workshop on Science Gateways 'IWSG-2014' (2014, Dublin, Ireland), arXiv preprint arXiv:1404.5611.
  22. S. Stirenko, O. Zinenko, and D. Gribenko, Proc. Third Int. Conf. 'High Performance Computing HPC-UA 2013' (2013, Kyiv, Ukraine), p. 380.
  23. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B, 33, No. 12: 7983 (1986). Crossref
  24. K. W. Jacobsen, J. K. Norskov, and M. J. Puska, Phys. Rev. B, 35, No. 14: 7423 (1987). Crossref
  25. S. Plimpton, J. Comp. Phys., 117: 1 (1995). Crossref
  26. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph., 14, No. 1: 33 (1996). Crossref
  27. A. Stukowski, Mod. Sim. Mater. Sci. Eng., 18, No. 1: 015012 (2010). Crossref
  28. Yu. G. Gordienko, Metallofiz. Noveishie Tekhnol., 33, No. 9: 1217 (2011) (in Ukrainian).
  29. H. Tsuzuki, P. Branicio, and J. Rino, Comp. Phys. Comm., 177: 518 (2007). Crossref
  30. E. E. Zasimchuk, Yu. G. Gordienko, J. Schreiber, R. Gontareva, P. Kuznetsov, and V. Karbovsky, Mater. Sci. Forum, 567: 421 (2008).
  31. E. E. Zasimchuk and I. T. Yarmatov, Fizicheskaya Mezomekhanika, 12, No. 3: 55 (2009) (in Russian).
  32. E. E. Zasimchuk, Yu. G. Gordienko, A. S. Gatsenko, A. I. Baskova, and I. T. Yarmatov, Fizicheskaya Mezomekhanika, 13, No. 2: 61 (2010) (in Russian).
  33. O. Gatsenko, O. Baskova, O. Lodygensky, G. Fedak, and Yu. G. Gordienko, Key Eng. Mater., 465: 306 (2011). Crossref
  34. M. Wojdyr, Y. Mo, E. Grzanka, S. Stelmakh, S. Gierlotka, T. Proffen, and I. Szlufarska, Z. Kristallogr., 26, Suppl.: 255 (2007). Crossref
  35. M. A. Krivoglaz, Difraktsiya Rentgenovskikh Luchey i Neytronov v Neideal'nykh Kristallakh (Kiev: Naukova Dumka: 1988) (in Russian).