Structural F.C.C.—Icosahedron Transitions within the Aluminium and Lead Nanoclusters

V. S. Baydyshev, Yu. Ya. Gafner

Khakas State University named after N.F. Katanova, 90 Lenina Ave., 655017 Abakan, Republic of Khakassia, Russia

Received: 17.02.2014; final version - 16.06.2014. Download: PDF

The thermal stability boundaries of initial f.c.c. phase within the Al and Pb nanoclusters with a diameter of up to 3.0 nm are investigated by the molecular dynamics method using modified tight-binding potential (TB-SMA). The simulation indicates that the structural transition in small Al and Pb clusters from the initial f.c.c. phase to other modifications, including ones with pentagonal symmetry, occurs under the influence of temperature factor. The transition temperature is shifted towards the cluster melting temperature with an increase in the cluster size. As determined, the geometrical ‘magic’ numbers play a major role in a structure formation for aluminium clusters, unlike lead clusters.

Key words: nanoclusters, aluminium, lead, molecular dynamics, tight-binding, computer simulations.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i09/1225.html

DOI: https://doi.org/10.15407/mfint.36.09.1225

PACS: 61.43.Bn, 61.46.Bc, 61.46.Df, 62.23.St, 64.70.Nd, 65.80.-g, 82.60.Qr

Citation: V. S. Baydyshev and Yu. Ya. Gafner, Structural F.C.C.—Icosahedron Transitions within the Aluminium and Lead Nanoclusters, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1225—1236 (2014) (in Russian)


REFERENCES
  1. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, J. Nanopart. Res., 6: 411 (2004). Crossref
  2. M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, J. Nanopart. Res., 1: 243 (1999). Crossref
  3. Ch. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology (New York: Wiley & Sons, Inc.: 2003).
  4. W. Demtröder, Molekülphysik. Theoretische Grundlagen und Experimentelle Methoden (München: R. Oldenbourg Verlag GmbH: 2003) (in German).
  5. W. Miehle, O. Kandler, T. Leisner, and O. Echt, J. Chem. Phys., 91: 5940 (1989). Crossref
  6. S. Sugano and H. Koizumi, Microcluster Physics (Berlin: Springer-Verlag: 1998). Crossref
  7. D. J. Wales and J. P. K. Doye, Cond. Mat., 3: 344 (1998).
  8. J. M. Soler, M. R. Beltran, and K. Michaelian, Phys. Rev. B, 61: 5771 (2000). Crossref
  9. S. C. Hendy and B. D. Hall, Cond. Mat., 11 (2000).
  10. B. M. Smirnov, Uspekhi Fizicheskikh Nauk, 163, No. 10: 29 (1993) (in Russian). Crossref
  11. F. Cleri and V. Rosato, Phys. Rev. B, 48: 22 (1993). Crossref
  12. A. G. Bembel and V. M. Samsonov, Vestnik Tverskogo Gosudarstvennogo Universiteta. Ser. Fizika, No. 13: 72 (2011) (in Russian).
  13. S. Nose, J. Phys. Chem., 81: 511 (1984). Crossref
  14. Yu. N. Gornostyrev, I. N. Kar'kin, M. I. Katsnel'son, and A. V. Trefilov, Fiz. Met. Metalloved., 96, No. 2:19 (2003) (in Russian).
  15. C. M. Wei, C. Cheng, and C. M. Chang, Phys. Chem. B, 110: 24642 (2006). Crossref
  16. B. K. Rao, S.N. Khanna, and P. Jena, Phys. Rev. B, 62, No. 7: 4666 (2000). Crossref
  17. Chang-Hong Yao, Bin Song, and Pei-Lin Cao, Phys. Rev. B, 70: 195431 (2004). Crossref
  18. Xiao-Ping Li, Wen-Cai Lu, Qing-Jun Zang, Guang-Ju Chen, C. Z. Wang, and K. M. Ho, J. Phys. Chem. A, 113: 6217 (2009). Crossref
  19. S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, Fiz. Met. Metalloved., 104, No. 2: 189 (2007) (in Russian).
  20. S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, ZhETF, 135, No. 5: 899 (2009) (in Russian).