Thermal Analyses for Induction Sintering of Powder Metal Compacts up to Sintering Temperature

U. Çavdar$^{1}$, E. Atik$^{2}$, M. B. Akgül$^{2}$, H. Karaca$^{3}$

$^{1}$Dokuz Eylül University, Department of Electronic Engineering, Izmir, Turkey
$^{2}$Celal Bayar University, Vocational School, Department of Machinery, Turgutlu Campus, 45400 Manisa, Turkey
$^{3}$Celal Bayar University, Mechanical Engineering Department, Muradiye Campus, Manisa, Turkey

Received: 02.02.2014; final version - 06.06.2014. Download: PDF

Induction sintering is developed as an alternative method to conventional sintering in order to sinter iron-based powder metal (PM) compacts. In this study, the 12 kW power and 30 kHz frequency induction-sintering machine is used for 3 wt.% copper-mixed iron. The effects of different shapes and sizes of the induction coil, and temperature differences on the PM compacts up to sintering temperature are investigated; these parameters are determined both theoretically and experimentally during induction sintering. Iron-based PM compacts are sintered at 1120°C. Induction sintering of iron-based PM compacts are simulated using a program to examine the effects of magnetic flux and temperature distribution in the sample over time. The results are compared with the experimental studies.

Key words: induction, sintering, medium frequency, iron, thermal analysis.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i09/1247.html

DOI: https://doi.org/10.15407/mfint.36.09.1247

PACS: 06.60.Vz, 07.20.Hy, 61.43.Gt, 81.05.Bx, 81.20.Ev, 81.70.Pg

Citation: U. Çavdar, E. Atik, M. B. Akgül, and H. Karaca, Thermal Analyses for Induction Sintering of Powder Metal Compacts up to Sintering Temperature, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1247—1258 (2014)


REFERENCES
  1. R. M. German, Powder Metallurgy Science (Princeton, NJ: MPIF: 1984).
  2. A. Salak, K. Vasilko, M. Selecka, and H. Danninger, J. Mater. Process. Technol., 176: 62 (2006). Crossref
  3. I. Cristofolini, C. Menapace, M. Cazzolli, A. Rao, W. Pahl, and A. Molinari, J. Mater. Process. Technol., 212: 1513 (2012). Crossref
  4. M. R. Raza, F. Ahmad, M. A. Omar, and R. M. German, J. Mater. Process. Technol., 212: 164 (2012). Crossref
  5. A. Kurt and H. Ateş, Materials and Design, 28: 230 (2007). Crossref
  6. H. Arik and M. Turker, Materials and Design, 28: 140 (2007). Crossref
  7. I. J. Shon, B. R. Kim, J. M. Doh, and J. K. Yoon, Ceram. Int., 36: 1797 (2010). Crossref
  8. I. J. Shon, I. K. Jeong, J. H. Park, B. R. Kim, and K. T. Lee, Ceram. Int., 35, Iss. 1: 363 (2009). Crossref
  9. T. Watanabe and T. Kohno, Report of the Casting Research Laboratory, No. 23: 1 (1972).
  10. U. Çavdar and E. Atik, Modern Appl. Sci., 4, No. 3: 63 (2010). Crossref
  11. U. Çavdar and E. Atik, Euro PM2009 Sintering (Copenhagen: 2009), p. 13.
  12. U. Çavdar and E. Atik, 5-th International Powder Metallurgy Conference (Ankara: 2008), p. 18.
  13. U. Çavdar (PhD Thesis) (2009), p. 110.
  14. U. Çavdar and E. Atik, JOM, 66, No. 6: 1027 (2014). Crossref
  15. V. K. Bobolev and L. G. Bolkhovitinov, Bulletin of the Academy of Sciences of the USSR, 709 (1960).
  16. S. Zinn and S. L. Semiatin, ASM International, 3: 12 (1998).
  17. J. Lewis, Engineering News, 43 (1999).