Diffusive Phase Formation in the Nanosize Layer-by-Layer Film Compositions of Pt(15 nm)/Fe(15 nm) and [Pt(7.5 nm)/Fe(7.5 nm)]$_{2}$ on a SiO$_{2}$(100 nm)/Si(001) Substrate

Iu. M. Makogon, O. P. Pavlova, S. I. Sidorenko, T. I. Verbytska, I. A. Vladymyrskyi, O. V. Figurna, I. O. Kruglov

National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine

Received: 25.02.2014. Download: PDF

Influence of the additional interfaces in nanoscale layered Pt/Fe film on the SiO$_{2}$(100 nm)/Si substrate, with the retention of initial film thickness (of 30 nm), on the diffusive phase-formation processes–transformation of soft-magnetic chemically disordered A1(FePt) phase into hard-magnetic chemically ordered L1$_{0}$(FePt) phase at annealing in vacuum is investigated by methods of physical materials science: X-ray diffraction, atomic force microscopy and magnetic force microscopy, Rutherford backscattering, SQUID magnetometry, and electrical resistance measurements. As revealed after deposition, these films have bi- and four-layer structures, respectively. Annealing in vacuum in the temperature range of 600—900°C with annealing time of 30 s is accompanied by phase transformation. Introduction of additional interfaces improves the ordering kinetics. These facts are illustrated with decrease of formation onset temperature for the ordered L1$_{0}$(FePt) phase with (111) texture in [Pt(7.5 nm)/Fe(7.5 nm)]$_{2}$ multi-layered films by 100°C as compared with Pt(15 nm)/Fe(15 nm) films, in which the A1(FePt) → L1$_{0}$(FePt) phase transformation occurs during annealing at 700°C. Coercive force of films increases with increasing the annealing temperature.

Key words: chemically ordered L1$_{0}$(FePt) phase, сoercive force, interface, nanosize film.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i10/1359.html

DOI: https://doi.org/10.15407/mfint.36.10.1359

PACS: 66.30.Pa, 64.70.Nd, 68.55.jm, 75.50.Vv, 75.70.Ak, 81.40.Ef, 81.40.Rs

Citation: Iu. M. Makogon, O. P. Pavlova, S. I. Sidorenko, T. I. Verbytska, I. A. Vladymyrskyi, O. V. Figurna, and I. O. Kruglov, Diffusive Phase Formation in the Nanosize Layer-by-Layer Film Compositions of Pt(15 nm)/Fe(15 nm) and [Pt(7.5 nm)/Fe(7.5 nm)]$_{2}$ on a SiO$_{2}$(100 nm)/Si(001) Substrate, Metallofiz. Noveishie Tekhnol., 36, No. 10: 1359—1370 (2014) (in Ukrainian)


REFERENCES
  1. J. Lyubina, B. Rellinghaus, O. Gutfleisch, and M. Albrecht, Handbook of Magnetic Materials (Ed. K. H. J. Buschow), vol. 19, p. 291 (2011).
  2. D. Weller and M. F. Doerner, An. Rev. Mater. Sci, 30: 611 (2000). Crossref
  3. S. N. Piramanayagam, J. Appl. Phys., 102: 011301-1 (2007). Crossref
  4. Bo Yao and K. R. Coffey, J. Appl. Phys., 105: 07A726-1 (2009). Crossref
  5. L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, J. Magn. Magn. Mater., 322: 2658 (2010). Crossref
  6. T. Bublat and D. Goll, Nanotechnology, 22: 315301 (2011). Crossref
  7. E. Yang, D. E. Laughlin, and J.-G. Zhu, IEEE Trans. Magn., 48, No. 1: 7 (2012). Crossref
  8. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L. Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci, 266: 100 (2013). Crossref
  9. Y. N. Han, F. T. Yuan, Y. H. Lin, Jen-Hwa Hsu, and J. K. Mei, IEEE Trans. Magn., 48, No. 11: 3158 (2012). Crossref
  10. W. Dinga, S. Ishiguroa, R. Ogatsua, and D. Jua, Appl. Surf. Sci., 258: 7976 (2012) Crossref
  11. T. O. Seki, Y. K. Takahashi, and K. Hono, J. Appl. Phys., 103: 023910 1 (2008). Crossref
  12. S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, Appl. Phys. Lett., 94, 232505-1 (2009). Crossref
  13. J.-S. Kim and Y.-M. Koo, J. Appl. Phys., 100: 093909-1 (2006). Crossref
  14. S. N. Hsiao, S. K. Chen, S. H. Liu, C. J. Liao, F. T. Yuan, and H. Y. Lee, IEEE Trans. Magn., 47, No. 10: 3637 (2011). Crossref
  15. S. N. Hsiao, S. H. Liu, S. K. Chen, F. T. Yuan, and H. Y. Lee, J. Appl. Phys., 111: 07A702-3 (2012). Crossref
  16. T. Smima, T. Moriguchi, S. Mitani, and K. Takahashi, Appl. Phys. Lett., 80: 288 (2002). Crossref
  17. Y. Endo, N. Kikuchi, O. Kitakami, and Y. Shimada, J. Appl. Phys., 89: 7065 (2001). Crossref
  18. C. Feng, B. H. Li, Y. Liu, J. Teng, M. H. Li, Y. Jiang, and G. H. Yu, J. Appl. Phys., 103: 023916-1 (2008). Crossref
  19. S. C. Chou, C. C. Yu, Y. Liou, Y. D. Yao, D. H. Wei, T. S. Chin, and M. F. Tai, J. Appl. Phys., 95: 7276 (2004). Crossref
  20. S. K. Chen, F. T. Yuan, and T. S. Chin, J. Appl. Phys., 97: 073902 (2005). Crossref
  21. Y. Endo, K. Oikawa, T. Miyazaki, O. Kitakami, and Y. Shimada, J. Appl. Phys., 94: 7222 (2003). Crossref
  22. M. L. Yan, N. Powers, D. J. Sellmyer, J. Appl. Phys., 93, No. 10: 8292 (2003). Crossref
  23. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenostrukturnyy i Electronnoopticheskiy Analiz (X-Ray Structural and Electron-Optical Analysis (Moscow: Metallurgiya: 1970) (in Russian).