Grain-Boundary Diffusion of Hydrogen Atoms in the $\alpha$-Iron

S. M. Teus, V. G. Gavriljuk

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 24.02.2014. Download: PDF

Grain boundary diffusion of hydrogen atoms in the $\alpha$-iron is analysed based on the theoretical modelling. By means of molecular-dynamics simulation of hydrogen-atoms’ migration in selected special grain boundaries with different misorientation angles as well as in the bulk, it is demonstrated that the activation enthalpy of hydrogen migration in the grain boundary is higher than that in the bulk. Based on this result, a conclusion is made that grain boundaries in the iron are traps for hydrogen atoms and retard their migration. As supposed, an increase in the hydrogen grain-boundary diffusion, as observed in some experiments, is related to the hydrogen-caused intergranular cracking.

Key words: $\alpha$-iron, hydrogen-in-metal diffusion, special grain boundaries, molecular dynamics.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i10/1399.html

DOI: https://doi.org/10.15407/mfint.36.10.1399

PACS: 02.70.Ns, 61.72.Bb, 61.72.Mm, 61.72.sh, 61.72.Yx, 66.30.je, 82.60.Cx

Citation: S. M. Teus and V. G. Gavriljuk, Grain-Boundary Diffusion of Hydrogen Atoms in the $\alpha$-Iron, Metallofiz. Noveishie Tekhnol., 36, No. 10: 1399—1410 (2014)


REFERENCES
  1. C. D. Beachem, Metall. Trans. A, 3: 437 (1972).
  2. I. M. Bernstain and A. W. Thompson, Int. Met. Rev., 21: 269 (1979).
  3. J. P. Hirth, Metall. Trans. A, 11: 861 (1980). Crossref
  4. D. Symons, Metall. Trans. A, 29: 1265 (1998). Crossref
  5. H. Vehoff, Hydrogen in Metals III (Ed. H. Wipf) (Berlin–Heidelberg: Springer: 1997).
  6. A. Pundt and R. Kirchheim, J. Mater. Res., 36: 555 (2006). Crossref
  7. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. and Eng. R, 65: 39 (2009). Crossref
  8. H. Fukushima and H. K. Birnbaum, Acta Metal., 32: 851 (1984). Crossref
  9. P. Novak, R. Yuan, B. P. Somerday, P. Sofronis, and R. O. Ritchie, J. Mech. Phys. Solids, 58: 206 (2010). Crossref
  10. L. Zhong, R. Wu, A. J. Freeman, and G. B. Olson, Phys. Rev. B, 62: 13938 (2000). Crossref
  11. M. Wen, S. Fukuyama, and K. Yokogava, Acta Mater., 51: 1767 (2003). Crossref
  12. Y. A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, Phys. Rev. B, 84: 144121 (2011). Crossref
  13. R. D. Calder, T. S. Elleman, and K. Verghese, J. of Nuclear Mater., 46: 46 (1973). Crossref
  14. T. Tsuru and R. M. Latanision, Scripta Metal., 16: 575 (1982). Crossref
  15. B. Ladna and H. K. Birnbaum, Acta Metall., 35: 2537 (1987). Crossref
  16. A. Kimura and H. K. Birnbaum, Acta Metall., 36: 757 (1988). Crossref
  17. A. M. Brass, A. Chanfreau, and J. Chene, Hydrogen Effects on Material Behaviour (Eds. A. W. Thompson and N. R. Moody) (Warrendale, Pennsylvania: TMS Publ.: 1990), p. 19.
  18. N. R. Quick and H. H. Johnson, Metall. Trans. A, 10: 67 (1979). Crossref
  19. W. Beck, J. Bockris, J. McBreen, and L. Nanis, Proc. R. Soc. A, 290: 220 (1966). Crossref
  20. W. M. Robertson, Z. Metallk., 69: 436 (1973).
  21. V. M. Sidorenko and I. I. Sidorak, Physicochemical Mechanics of Materials, 9: 12 (1973).
  22. R. Kirchheim, Phys. Scr., Iss. T94: 58 (2001). Crossref
  23. S. Plimpton, J. Comp. Phys., 117: 1 (1995). Crossref
  24. S. Ranganathan, Acta Cryst., 21: 197 (1966). Crossref
  25. M. A. Fortes, phys. status solidi (b), 54: 311 (1972). Crossref
  26. D. E. Jiang and E. A. Carter, Phys. Rev. B, 70: 064102 (2004). Crossref
  27. J. K. Norskov, Phys. Rev. B, 26: 2875 (1982). Crossref
  28. A. Ramasubramaniam, M. Itakura, and E. Carter, Phys. Rev. B, 79: 174101 (2009). Crossref
  29. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Philos. Mag., 83: 3977 (2003). Crossref
  30. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, and A. V. Barashev, J. Phys. Condens. Matter, 16: S2629 (2004). Crossref
  31. M. W. Finnis and J. E. Sinclair, Philos. Mag. A, 50: 45 (1984). Crossref
  32. M. Parrinello and A. Rahman, J. Appl. Phys., 52: 7182 (1981). Crossref
  33. S. Nose, Mol. Phys., 52: 255 (1984). Crossref
  34. W. G. Hoover, Phys. Rev. A, 31: 1695 (1985). Crossref
  35. J. S. Wang, Eng. Fract. Mech., 68: 647 (2001). Crossref
  36. T. Ohmisawa, S. Uchiyama, and N. Nagumo, J. Alloys Compd., 356–357: 290 (2003). Crossref
  37. H. Kimizuka, H. Mori, and S. Ogata, Phys. Rev. B, 83: 094110 (2011). Crossref
  38. J. L. Dillard and S. Talbot-Besnard, L'hydrogene Dans les Metaux (Paris: Editions Science et Industrie: 1972), vol. 1.
  39. M. Nagano, Y. Hayashi, N. Ohtani, M. Isshiki, and K. Igaki, Scr. Metall., 16: 973 (1982). Crossref
  40. Y. Shibuta, S. Takamoto, and T. Suzuki, ISIJ International, 48: 1582 (2008). Crossref
  41. A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Technische Mechanik, 30: 169 (2010).
  42. J. F. Dufresne, A. Seeger, P. Groh, and P. Moser, phys. status solidi (a), 36: 579 (1976). Crossref
  43. T. Suzuoka, Trans. Japan Inst. Metals, 2: 25 (1961). Crossref
  44. J. C. Fisher, J. Appl. Phys., 22: 74 (1951). Crossref
  45. R. T. P. Whipple, Philos. Mag., 45: 1225 (1954). Crossref
  46. R. Nazarov, T. Hickel, and J. Neugebauer, Phys. Rev. B, 82: 224104 (2010). Crossref
  47. J. Yao and J. R. Cahoon, Acta Metal Mater., 39: 111 (1991). Crossref
  48. J. Yao and J. R. Cahoon, Acta Metal Mater., 39: 119 (1991). Crossref
  49. A. A. Nazarov, A. E. Romanov, and R. Z. Valiev, Acta Metall. Mater., 41: 1033 (1993). Crossref
  50. A. M. Brass and A. Chanfreau, Acta Mater., 44: 3823 (1996). Crossref
  51. H. K. Birnbaum and P. Sofronis, Mat. Sci. Eng. A, 176: 191 (1994). Crossref
  52. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, J. Appl. Phys., 108: 083723-1–9 (2010). Crossref