The Anisotropy Induced by a Magnetostriction in Exchange-Biased Two-Layer Films

O. V. Gomonay$^{1}$, I. Lukyanchuk$^{2}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$Laboratory of Cond. Mat. Physics, University of Picardy (LPMC—UPJV), 33 Rue Saint-Leu, 80039 Amiens, France

Received: 07.04.2014. Download: PDF

The exchange bias at ferromagnetic (FM)/antiferromagnetic (AF) interfaces strongly depends upon the state of antiferromagnetic layer, which is sensitive to mechanical stresses due to its strong magnetoelastic coupling. In a given paper, we consider magnetoelastic effects, which arise at FM/AF interface due to misfit of lattices and magnetic ordering. We show how magnetostriction affects mutual orientation of the AF and FM vectors as well as magnetic easy-axis direction in thin AF layer. The results obtained can be used for tailoring of exchange-biased systems.

Key words: magnetic anisotropy, exchange bias, magnetoelasticity, magnetic properties of interfaces, antiferromagnet.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i11/1453.html

DOI: https://doi.org/10.15407/mfint.36.11.1453

PACS: 75.30.Et, 75.30.Gw, 75.50.Ee, 75.70.Cn, 75.80.+q, 85.70.Ay

Citation: O. V. Gomonay and I. Lukyanchuk, The Anisotropy Induced by a Magnetostriction in Exchange-Biased Two-Layer Films, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1453—1464 (2014)


REFERENCES
  1. K. Li, Y. Wu, Z. Guo, Y. Zheng, G. Han, J. Qiu, P. Luo, L. An, and T. Zhou, J. Nanoscience and Nanotechnology, 7, No. 1: 13 (2007).
  2. F. Radu, S. K. Mishra, I. Zizak, A. I. Erko, H. A. Dürr, W. Eberhardt, G. Nowak, S. Buschhorn, H. Zabel, K. Zhernenkov, M. Wolff, D. Schmitz, E. Schierle, E. Dudzik, and R. Feyerherm, Phys. Rev. B, 79, No. 18: 184425 (2009). Crossref
  3. Y. Ijiri, J. A. Borchers, R. W. Erwin, S.-H. Lee, P. J. van der Zaag, and R. M. Wolf, Phys. Rev. Lett., 80, No. 3: 608 (1998). Crossref
  4. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater., 192, No. 2: 203 (1999). Crossref
  5. P. Miltenyi, M. Gierlings, J. Keller, B. Beschoten, G. Guntherodt, U. Nowak, and K. D. Usadel, Phys. Rev. Lett., 84, No. 18: 4224 (2000). Crossref
  6. W. Zhu, L. Seve, R. Sears, B. Sinkovic, and S. S. P. Parkin, Phys. Rev. Lett., 86, No. 23: 5389 (2001). Crossref
  7. C. L. Chien, V. S. Gornakov, V. I. Nikitenko, A. J. Shapiro, and R. D. Shull, Phys. Rev. B, 68, No. 1: 014418 (2003). Crossref
  8. H. V. Gomonay and V. M. Loktev, Phys. Rev. B, 75, No. 17: 174439 (2007). Crossref
  9. E. Folven, A. Scholl, A. Young, S. T. Retterer, J. E. Boschker, T. Tybell, Y. Takamura, and J. K. Grepstad, Phys. Rev. B, 84, No. 22: 220410 (2011). Crossref
  10. Y. Takamura, R. V. Chopdekar, A. Scholl, A. Doran, J. A. Liddle, B. Harteneck, and Y. Suzuki, Nano Letters, 6, No. 6: 1287 (2006). Crossref
  11. D. Sander, Reports on Progress in Physics, 62, No. 5: 809 (1999). Crossref
  12. A. Enders, D. Sander, and J. Kirschner, J. Appl. Phys., 85, No. 8: 5279 (1999). Crossref
  13. T. Gutjahr-Löser, D. Sander, and J. Kirschner, J. Magn. Magn. Mater., 220, No. 1: L1 (2000). Crossref
  14. W. Wulfhekel, T. Gutjahr-Löser, F. Zavaliche, D. Sander, and J. Kirschner, Phys. Rev. B, 64, No. 14: 144422 (2001). Crossref
  15. N. C. Koon, Phys. Rev. Lett., 78, No. 25: 4865 (1997). Crossref
  16. F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Luning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, Nature, 405, No. 6788: 7679 (2000). Crossref
  17. H. Ohldag, A. Scholl, F. Nolting, S. Anders, F. U. Hillebrecht, and J. Stöhr, Phys. Rev. Lett., 86, No. 13: 2878 (2001). Crossref
  18. L. Malkinski, N. Cramer, A. Hutchison, R. Camley, Z. Celinski, and D. Skrzypek, J. Appl. Phys., 91, No. 10: 7242 (2002). Crossref
  19. L. Malkinski, N. Cramer, A. Hutchison, R. Camley, Z. Celinski, D. Skrzypek, and R. B. Goldfarb, J. Magn. Magn. Mater., 240, Nos. 1–3: 261 (2002). Crossref
  20. T. Yamada, J. Phys. Soc. Japan, 21, No. 4: 650 (1966). Crossref
  21. S. C. Abrahams, R. L. Barns, and J. L. Bernstein, Solid State Com., 10, No. 4: 379 (1972). Crossref
  22. J. Julliard and J. Nouet, Revue de Physique Appl., 10, No. 5: 325 (1975). Crossref
  23. D. Skrzypek and J. Heimann, J. Magn. Magn. Mater., 139, Nos. 1–2: 102 (1995). Crossref
  24. J. H. Greiner, A. E. Berkowitz, and J. E. Weidenborner, J. Appl. Phys., 37, No. 5: 2149 (1966). Crossref
  25. G. Bochi, O. Song, and R. C. O'Handley, Phys. Rev. B, 50, No. 3: 2043 (1994). Crossref
  26. Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology: New Series. Group III. Crystal and Solid State Physics. Vol. 19. Magnetic Properties of Metals. Subvol. a. 3d, 4d and 5d Elements, Alloys and Compounds (Berlin: Springer-Verlag: 1982).
  27. H. D. Chopra, D. X. Yang, P. J. Chen, H. J. Brown, L. J. Swartzendruber, and W. F. Egelhoff, Jr., Phys. Rev. B, 61, No. 22: 15312 (2000). Crossref
  28. T. Gredig, I. N. Krivorotov, and E. Dan Dahlberg, J. Appl. Phys., 91, No. 10: 7760 (2002). Crossref
  29. R. H. Victora and J. M. MacLaren, Phys. Rev. B, 47, No. 17: 11583 (1993). Crossref
  30. O. Gomonay, S. Kondovych, and V. Loktev, J. Magn. Magn. Mater., 354, No. 3: 125 (2014). Crossref
  31. W. L. Roth, Phys. Rev., 111, No. 3: 772 (1958). Crossref
  32. G. A. Slack, J. Appl. Phys., 31, No. 9: 1571 (1960). Crossref
  33. D. Herrmann-Ronzaud, P. Burlet, and J. Rossat-Mignod, J. Phys. C: Solid State Phys., 11, No. 10: 2123 (1978). Crossref
  34. F. U. Hillebrecht, H. Ohldag, N. B. Weber, C. Bethke, U. Mick, M. Weiss, and J. Bahrdt, Phys. Rev. Lett., 86, No. 15: 3419 (2001). Crossref
  35. A. Scholl, F. Nolting, J. Stöhr, T. Regan, J. Lüning, J. W. Seo, J.-P. Locquet, J. Fompeyrine, S. Anders, H. Ohldag, and H. A. Padmore, J. Appl. Phys., 89, No. 11: 7266 (2001). Crossref
  36. T. Yamada, S. Saito, and Y. Shimomura, J. Phys. Soc. Japan, 21, No. 4: 672 (1966). Crossref
  37. X. Fu, G. Cao, Y. Gao, Z. Wu, and J. Zhang, J. Modern Physics, 2, No. 10: 1187 (2011). Crossref