Loading [MathJax]/jax/output/HTML-CSS/jax.js

The Anisotropy Induced by a Magnetostriction in Exchange-Biased Two-Layer Films

O. V. Gomonay1, I. Lukyanchuk2

1National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
2Laboratory of Cond. Mat. Physics, University of Picardy (LPMC—UPJV), 33 Rue Saint-Leu, 80039 Amiens, France

Received: 07.04.2014. Download: PDF

The exchange bias at ferromagnetic (FM)/antiferromagnetic (AF) interfaces strongly depends upon the state of antiferromagnetic layer, which is sensitive to mechanical stresses due to its strong magnetoelastic coupling. In a given paper, we consider magnetoelastic effects, which arise at FM/AF interface due to misfit of lattices and magnetic ordering. We show how magnetostriction affects mutual orientation of the AF and FM vectors as well as magnetic easy-axis direction in thin AF layer. The results obtained can be used for tailoring of exchange-biased systems.

Key words: magnetic anisotropy, exchange bias, magnetoelasticity, magnetic properties of interfaces, antiferromagnet.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i11/1453.html

DOI: https://doi.org/10.15407/mfint.36.11.1453

PACS: 75.30.Et, 75.30.Gw, 75.50.Ee, 75.70.Cn, 75.80.+q, 85.70.Ay

Citation: O. V. Gomonay and I. Lukyanchuk, The Anisotropy Induced by a Magnetostriction in Exchange-Biased Two-Layer Films, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1453—1464 (2014)


REFERENCES
  1. K. Li, Y. Wu, Z. Guo, Y. Zheng, G. Han, J. Qiu, P. Luo, L. An, and T. Zhou, J. Nanoscience and Nanotechnology, 7, No. 1: 13 (2007).
  2. F. Radu, S. K. Mishra, I. Zizak, A. I. Erko, H. A. Dürr, W. Eberhardt, G. Nowak, S. Buschhorn, H. Zabel, K. Zhernenkov, M. Wolff, D. Schmitz, E. Schierle, E. Dudzik, and R. Feyerherm, Phys. Rev. B, 79, No. 18: 184425 (2009). Crossref
  3. Y. Ijiri, J. A. Borchers, R. W. Erwin, S.-H. Lee, P. J. van der Zaag, and R. M. Wolf, Phys. Rev. Lett., 80, No. 3: 608 (1998). Crossref
  4. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater., 192, No. 2: 203 (1999). Crossref
  5. P. Miltenyi, M. Gierlings, J. Keller, B. Beschoten, G. Guntherodt, U. Nowak, and K. D. Usadel, Phys. Rev. Lett., 84, No. 18: 4224 (2000). Crossref
  6. W. Zhu, L. Seve, R. Sears, B. Sinkovic, and S. S. P. Parkin, Phys. Rev. Lett., 86, No. 23: 5389 (2001). Crossref
  7. C. L. Chien, V. S. Gornakov, V. I. Nikitenko, A. J. Shapiro, and R. D. Shull, Phys. Rev. B, 68, No. 1: 014418 (2003). Crossref
  8. H. V. Gomonay and V. M. Loktev, Phys. Rev. B, 75, No. 17: 174439 (2007). Crossref
  9. E. Folven, A. Scholl, A. Young, S. T. Retterer, J. E. Boschker, T. Tybell, Y. Takamura, and J. K. Grepstad, Phys. Rev. B, 84, No. 22: 220410 (2011). Crossref
  10. Y. Takamura, R. V. Chopdekar, A. Scholl, A. Doran, J. A. Liddle, B. Harteneck, and Y. Suzuki, Nano Letters, 6, No. 6: 1287 (2006). Crossref
  11. D. Sander, Reports on Progress in Physics, 62, No. 5: 809 (1999). Crossref
  12. A. Enders, D. Sander, and J. Kirschner, J. Appl. Phys., 85, No. 8: 5279 (1999). Crossref
  13. T. Gutjahr-Löser, D. Sander, and J. Kirschner, J. Magn. Magn. Mater., 220, No. 1: L1 (2000). Crossref
  14. W. Wulfhekel, T. Gutjahr-Löser, F. Zavaliche, D. Sander, and J. Kirschner, Phys. Rev. B, 64, No. 14: 144422 (2001). Crossref
  15. N. C. Koon, Phys. Rev. Lett., 78, No. 25: 4865 (1997). Crossref
  16. F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Luning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, Nature, 405, No. 6788: 7679 (2000). Crossref
  17. H. Ohldag, A. Scholl, F. Nolting, S. Anders, F. U. Hillebrecht, and J. Stöhr, Phys. Rev. Lett., 86, No. 13: 2878 (2001). Crossref
  18. L. Malkinski, N. Cramer, A. Hutchison, R. Camley, Z. Celinski, and D. Skrzypek, J. Appl. Phys., 91, No. 10: 7242 (2002). Crossref
  19. L. Malkinski, N. Cramer, A. Hutchison, R. Camley, Z. Celinski, D. Skrzypek, and R. B. Goldfarb, J. Magn. Magn. Mater., 240, Nos. 1–3: 261 (2002). Crossref
  20. T. Yamada, J. Phys. Soc. Japan, 21, No. 4: 650 (1966). Crossref
  21. S. C. Abrahams, R. L. Barns, and J. L. Bernstein, Solid State Com., 10, No. 4: 379 (1972). Crossref
  22. J. Julliard and J. Nouet, Revue de Physique Appl., 10, No. 5: 325 (1975). Crossref
  23. D. Skrzypek and J. Heimann, J. Magn. Magn. Mater., 139, Nos. 1–2: 102 (1995). Crossref
  24. J. H. Greiner, A. E. Berkowitz, and J. E. Weidenborner, J. Appl. Phys., 37, No. 5: 2149 (1966). Crossref
  25. G. Bochi, O. Song, and R. C. O'Handley, Phys. Rev. B, 50, No. 3: 2043 (1994). Crossref
  26. Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology: New Series. Group III. Crystal and Solid State Physics. Vol. 19. Magnetic Properties of Metals. Subvol. a. 3d, 4d and 5d Elements, Alloys and Compounds (Berlin: Springer-Verlag: 1982).
  27. H. D. Chopra, D. X. Yang, P. J. Chen, H. J. Brown, L. J. Swartzendruber, and W. F. Egelhoff, Jr., Phys. Rev. B, 61, No. 22: 15312 (2000). Crossref
  28. T. Gredig, I. N. Krivorotov, and E. Dan Dahlberg, J. Appl. Phys., 91, No. 10: 7760 (2002). Crossref
  29. R. H. Victora and J. M. MacLaren, Phys. Rev. B, 47, No. 17: 11583 (1993). Crossref
  30. O. Gomonay, S. Kondovych, and V. Loktev, J. Magn. Magn. Mater., 354, No. 3: 125 (2014). Crossref
  31. W. L. Roth, Phys. Rev., 111, No. 3: 772 (1958). Crossref
  32. G. A. Slack, J. Appl. Phys., 31, No. 9: 1571 (1960). Crossref
  33. D. Herrmann-Ronzaud, P. Burlet, and J. Rossat-Mignod, J. Phys. C: Solid State Phys., 11, No. 10: 2123 (1978). Crossref
  34. F. U. Hillebrecht, H. Ohldag, N. B. Weber, C. Bethke, U. Mick, M. Weiss, and J. Bahrdt, Phys. Rev. Lett., 86, No. 15: 3419 (2001). Crossref
  35. A. Scholl, F. Nolting, J. Stöhr, T. Regan, J. Lüning, J. W. Seo, J.-P. Locquet, J. Fompeyrine, S. Anders, H. Ohldag, and H. A. Padmore, J. Appl. Phys., 89, No. 11: 7266 (2001). Crossref
  36. T. Yamada, S. Saito, and Y. Shimomura, J. Phys. Soc. Japan, 21, No. 4: 672 (1966). Crossref
  37. X. Fu, G. Cao, Y. Gao, Z. Wu, and J. Zhang, J. Modern Physics, 2, No. 10: 1187 (2011). Crossref