Cluster Model of Liquid or Amorphous Metal. The Quantum-Statistical Theory. Electrical and Magnetic Properties

O. I. Mitsek, V. M. Pushkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 22.04.2014; final version - 06.11.2014. Download: PDF

Magnetoelectric properties of Fe-based amorphous metals (AM) are calculated within both the cluster ($K_j$) model and the many-electron operator spinors representation. AM are modified by the chemical-bond fluctuations (CBF) and microdiffusion. The wave function of Fe ion consists of wave functions of high-spin (HS, $\xi_3$), low-spin (LS, $\xi_1$), and band ($f_r$) states at the lattice site $r$. Their amplitudes $\xi_j$($T$, $B$) depend on temperature $T$ and magnetic field $B$. As postulated by the Fe—B example, the ferromagnetic clusters of $\alpha$-Fe interact ($A_{31} > 0$) through the LS ions within the hj holes. The Curie temperature $T_c$($\xi_j$) is lowered owing to $A_{31}$ at the AFM exchange with $A11 < 0$ for $h_j$. Ferromagnon exchange hardness, $D(T, \xi_j)$, depends on the CBF through $\xi_j(T)$. The AFM phase is stable, if $|A_{11}| > A_{33}$, and it has two antiferromagnon branches: $E_a \propto k$, $E_0 \cong A_{31}$ for quasi-momentum $k \ll 1$. Cr addition also stabilizes AFM phase owing to the Cr—Cr exchange ($A_{vv} < 0$). Probability of metamagnetic (MM) AFM $\rightarrow$ FM transition is increased by microdiffusion. The number of the nearest Cr—Cr neighbours within the $h_j$ holes is decreasing with the $T$ growing, decreasing $A_{vv}(T)$ at $T \rightarrow T_{MM} — 0$. The MM transitions either at $T_{MM}$ or in the $B_{MM}(T)$ field at $T < T_{MM}$ are accompanied by giant magnetoresistance with $\Delta R \propto \xi_1^2(T)s_T^2(B)$. Mean spin for LS ion is a part of ‘effective mass defect’ $\Delta m^{*}(T, B)$ at $B \rightarrow B_{MM}$. The FM effects such as ferromagnetic anisotropy (FMA) and magnetostriction (FMS) are caused by the LS-Fe—B$^{+}$ spin—orbit coupling in condition of deformation $u_{ij}$. Deformation $u_{ij}$ induces FMA ($K_u \ne 0$) in the process of AM-ribbon fabrication or after annealing. The curve of magnetic susceptibility $\chi(B)$ depends on $K_u$ and $K_1$ within the cluster.

Key words: amorphous ferromagnetic or antiferromagnetic, clusters, magnons, magnetic anisotropy, magnetostriction, giant magnetoresistance, exchange, chemical-bond fluctuations, many-electron operator spinors.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i01/0013.html

DOI: https://doi.org/10.15407/mfint.37.01.0013

PACS: 71.10.Fd, 72.10.Di, 72.15.Cz, 75.30.Kz, 75.30.Mb, 75.47.-m, 75.50.Kj

Citation: O. I. Mitsek and V. M. Pushkar, Cluster Model of Liquid or Amorphous Metal. The Quantum-Statistical Theory. Electrical and Magnetic Properties, Metallofiz. Noveishie Tekhnol., 37, No. 1: 13—36 (2015) (in Russian)


REFERENCES
  1. S. V. Vonsovsky, Magnetism (Moscow: Nauka: 1971) (in Russian).
  2. A. I. Mitsek and V. N. Pushkar, Real'nye Kristally s Magnitnym Poryadkom [Real Crystals with Magnetic Order] (Kiev: Naukova Dumka: 1978) (in Russian).
  3. E. A.Dorofeeva and A. F. Prokoshin, Fiz. Met. Metalloved., 54, No. 3: 505 (1984) (in Russian).
  4. N. A. Skulkina, O. A. Ivanov, E. A. Stepanov et al., Fiz. Met. Metalloved., 103, No. 2: 157 (2007) (in Russian).
  5. N. A. Skulkina and O. A. Ivanov, Fiz. Met. Metalloved., 86, No. 2: 54 (1998) (in Russian).
  6. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol., 36, No. 1: 103 (2014) (in Russian). Crossref
  7. G. N. Makarov, Uspekhi Fizicheskikh Nauk, 183, No. 7: 673 (2013) (in Russian). Crossref
  8. O. I. Mitsek, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1473 (2014) (in Russian). Crossref
  9. O. I. Mitsek, Uspehi Fiziki Metallov, 13, No. 4: 345 (2012) (in Russian). Crossref
  10. N. A. Skulkina and O. A. Ivanov, Fiz. Met. Metalloved., 114, No. 5: 411 (2013) (in Russian). Crossref
  11. A. I. Mitsek, Fazovye Perekhody v Kristallakh s Magnitnoy Strukturoy [Phase Transitions in Crystals with Magnetic Structure] (Kiev: Naukova Dumka: 1989) (in Russian).
  12. V. S. Pokatilov, N. B. Dyakonova, E. G. Dmitrieva et al., Nanomaterials and Nanostructures—XXI Century, 4, No. 1: 29 (2013) (in Russian).
  13. A. V. Nosenko, M. G. Babich, M. P. Semen'ko, O. I. Nakonechna, and M. I. Zakharenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1183 (2010) (in Russian).
  14. V. A. Ivchenko, Nanomaterials and Nanostructures—XXI Century, 3, No. 3: 3 (2012) (in Russian).
  15. O. Wang, Phys. Rev. Lett., 106, No. 21: 215505 (2011). Crossref
  16. G. E. Abrosimova, Uspekhi Fizicheskikh Nauk, 181, No. 12: 1265 (2011) (in Russian). Crossref
  17. E. Z. Kuchinski, N. A. Nekrasov, and M. V. Sadovsky, Uspekhi Fizicheskikh Nauk, 182, No. 4: 345 (2012) (in Russian). Crossref
  18. A. C. Y. Lin, M. J. Neish, and G. Stokol, Phys. Rev. Lett., 110, No. 20: 205505 (2013). Crossref
  19. M. Pivetta, G. E. Pacchioni, and U. Schlickham, Phys. Rev. Lett., 110, No. 8: 86102: (2013). Crossref
  20. F. Tournns and K. Sato, Phys. Rev. Lett., 110, No. 5: 055501 (2013). Crossref
  21. T. Speck, Phys. Rev. Lett., 109, No. 19: 195703 (2012). Crossref
  22. N. V. Ershov, V. A. Lukshina, V. N. Fedorov et al., Fizika Tverdogo Tela, 55, No. 3: 460 (2013) (in Russian).
  23. A. A.Kharchenko, M. G.Lukashevich, V. I.Nuzhdin et al., Fizika Tverdogo Tela, 55, No. 1: 75 (2013) (in Russian).
  24. N. A. Skulkina, O. A. Ivanov, E. A. Stepanov et al., Fiz. Met. Metalloved., 114, No. 3: 241 (2013) (in Russian). Crossref
  25. N. V. Dmitrieva, V. A. Lukshina, E. P. Volkova et al., Fiz. Met. Metalloved., 114, No. 3: 144 (2013) (in Russian). Crossref
  26. B. A. Kornienkov, M. A. Libman, B. V. Molotilov et al., Fiz. Met. Metalloved., 114, No. 3: 237 (2013) (in Russian). Crossref
  27. M. I. Zakharenko, T. V. Kalnysh, and M. P. Semenko, Fiz. Met. Metalloved., 113, No. 8: 804 (2012) (in Russian).