Ultrasonic Impact Processing of Surface Layer of the BT1-0 Titanium in a Submicrocrystalline State

M. O. Vasylyev$^{1}$, B. M. Mordyuk$^{1}$, D. V. Pavlenko$^{2}$, L. F. Yatsenko$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Zaporizhzhya National Technical University, 64 Zhukovsky Str., 69063 Zaporizhzhya, Ukraine

Received: 16.05.2014. Download: PDF

The influence of the ultrasonic impact treatment on the structure and properties of the surface layer of $\alpha$-titanium in a submicrocrystalline state is investigated. As shown, combining the methods of bulk (twist extrusion) and superficial (ultrasonic impact treatment) severe plastic deformation, it is possible to provide increased strength, wear and corrosion resistance of the surface layers of titanium alloys. As determined, after twist extrusion, the structure with a size of grains of about 200—250 nm is formed in $\alpha$-Ti. By means of the Auger electron spectroscopy, the changes of chemical state of the $\alpha$-Ti surface are revealed after the twist extrusion followed by ultrasonic impact treatment in argon atmosphere and in liquid nitrogen. Ultrasonic impact treatment of the $\alpha$-Ti in argon leads to saturation of the surface layer with atoms of oxygen (to 40 at.%), and the processing in liquid nitrogen leads to saturation with atoms of N (to 21 at.%) and O (to 24 at.%), indicating that the mechanochemical synthesis of titanium nitride and oxynitride takes place. The microhardness of the $\alpha$-Ti surface layer after ultrasonic impact treatment in argon is increased by three times, and in liquid nitrogen–by 3.5 times.

Key words: BT1-0 titanium, surface layer, severe plastic deformation, twist extrusion, ultrasonic impact treatment.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i01/0121.html

DOI: https://doi.org/10.15407/mfint.37.01.0121

PACS: 43.35.+d, 62.20.Qp, 68.35.Gy, 68.55.J-, 68.55.Nq, 81.20.Hy, 81.65.Lp

Citation: M. O. Vasylyev, B. M. Mordyuk, D. V. Pavlenko, and L. F. Yatsenko, Ultrasonic Impact Processing of Surface Layer of the BT1-0 Titanium in a Submicrocrystalline State, Metallofiz. Noveishie Tekhnol., 37, No. 1: 121—134 (2015) (in Russian)


REFERENCES
  1. A. V. Panin, V. E. Panin, I. P. Chernov, Yu. I. Pochivalov, M. S. Kazachenok, A. A. Son, R. Z. Valiev, and V. I. Kopylov, Phys. Mesomech., 4, No. 6: 87 (2001) (in Russian).
  2. V. E. Panin, Phys. Mesomech., 4, No. 3: 5 (2001) (in Russian).
  3. E. V. Kozlov, A. N. Zhdanov, and N. A. Koneva, Phys. Mesomech., 10, No. 3: 95 (2007) (in Russian).
  4. Yu. M. Podrezov, M. I. Danylenko, E. M. Borysovs'ka, M. P. Brodnykovs'ky, M. V. Minakov, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 26, No. 5: 659 (2004) (in Russian).
  5. Yu. N. Podrezov and S. A. Firstov, Fizika i Tekhnika Vysokikh Davleniy, 16, No. 4: 37 (2006) (in Russian).
  6. V. M. Smelyanskiy, Mekhanika Uprochneniya Detaley Poverkhnostnym Plasticheskim Deformirovaniem [Mechanics of Strengthening of Details by Surface Plastic Deformation] (Moscow: Mashinostoenie: 2002) (in Russian).
  7. M. N. Stepnov, M. G. Veitsman, E. V. Giatsintov, L. V. Agamirov, and L. N. Gus'kova, Problemy Prochnosti, 17, No. 3: 321 (1985) (in Russian).
  8. V. A. Boguslaev, V. K. Yatsenko, P. D. Zhemanyuk, P. D. Pavlenko, D. V. Pukhal'skaya, G. V. Ben', and V. P. Derkachenko, Otdelochno-Uprochnyayushchaya Obrabotka Detaley GTD [Finishing Treatment of Details for Gas Turbine Engines] (Zaporizhzhya: Motor Sich: 2005) (in Russian).
  9. D. V. Pavlenko, D. V. Tkach, V. Yu. Kotsyuba, and S. N. Pakholka, X Int. Sci. Tech. Conf. (Zaporizhzhya: Motor Sich: 2013), p. 118 (in Russian).
  10. Ya. E. Beygel'zimer, V. N. Varyukhin, and D. V. Orlov, Vintovaya Ekstruziya — Protsess Nakopleniya Deformatsii [Twist Extrusion—Process of Strain Accumulation] (Donetsk: TEAN: 2003) (in Russian).
  11. G. I. Prokopenko, M. A. Vasylyev, B. N. Mordyuk, G. I. Kuzmich, O. F. Lugovskiy, and V. I. Chornyy, Ul'trazvukovyy Prystriy dlya Zmitsnennya ta Nanostrukturyzatsii Poverkhni Metaliv [Ultrasonic Device for Hardening and Nanostructurization of the Metallic Surfaces], Patent of Ukraine No. 9175 (Bull. No. 9, 15.09.2005) (in Ukrainian).
  12. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasiliev, and N. A. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  13. D. V. Tkach, D. V. Pavlenko, V. E. Ol'shanetskiy, Novye Materialy i Tekhnologii v Metallurgii i Mashinostroenii, No. 1: 11 (2011) (in Russian).
  14. A. M. Glezer and L. S. Metlov, Fizika Tverdogo Tela, 52, No. 6: 1090 (2010) (in Russian).
  15. Yu. V. Milman, Nanotekhnologii: Nauka i Proizvodstvo, 2, No. 3: 17 (2009) (in Russian).
  16. S. V. Bobylev and I. A. Ovid'ko, Mater. Phys. Mech., 8: 65 (2009) (in Russian).
  17. N. I. Novikov and V. K. Portnoy, Sverkhplastichnost' Splavov s Ultramelkim Zernom [Superplasticity of Ultrafine-Grained Alloys] (Moscow: Metallurgiya: 1981) (in Russian).
  18. B. N. Mordyuk, O. P. Karasevskaya, G. I. Prokopenko, and N. I. Khripta, Surf. Coat. Technol., 210: 54 (2012). Crossref
  19. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  20. M. O. Vasylyev, V. O. Tinkov, S. M. Voloshko, V. S. Filatova, and L. F. Iatsenko, Metallofiz. Noveishie Tekhnol., 34, No. 5: 687 (2012) (in Russian).
  21. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  22. V. M. Fedirko and I. M. Pohrelyuk, Azotuvannya Tytanu ta Yoho Splaviv [Nitridation of Titanium and Its Alloys] (Kyiv: Naukova Dumka: 1995) (in Ukrainian).
  23. O. Shut, Zakonomirnosti Zmitsnennya Polikrystaliv pry Perekhodi vid Micro- do Nanostrukturnoho Stanu [Regularities of Hardening of Polycrystals at Transition from Micro- to Nanostructural State] (Disser. … for the Degree of Cand. Phys.-Math. Sci.) (Kyiv: I. M. Frantsevich Institute for Materials Science, N.A.S.U.: 2013) (in Ukrainian).