On Energetics of Formation of Small Vacancy Complexes in the H.C.P. Beryllium

A. M. Timoshevskii$^{1}$, B. Z. Yanchitsky$^{1}$, O. S. Bakai$^{2}$, O. M. Ivasishin$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine

Received: 23.12.2014. Download: PDF

Energy of formation of small vacancy complexes in h.c.p. beryllium and spatial distribution of the electron density within the area of the vacancies are studied by methods of ab-initio simulation. Formation energies of model vacancy complexes are calculated by the pseudopotential method. The ordered model structures with a unit cell containing 96 Be atoms are used. As shown, the formation of small vacancy complexes in the h.c.p. beryllium is energetically unfavourable. The calculations of the spatial distribution of the electron density show a significant localization of the electron charge within the area of the vacancy complex.

Key words: vacancy complexes in beryllium, interaction of vacancies, ab-initio simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i02/0149.html

DOI: https://doi.org/10.15407/mfint.37.02.0149

PACS: 61.46.Df, 61.50.Lt, 61.72.Bb, 61.72.jd, 61.80.Az, 71.15.Dx, 71.15.Nc

Citation: A. M. Timoshevskii, B. Z. Yanchitsky, O. S. Bakai, and O. M. Ivasishin, On Energetics of Formation of Small Vacancy Complexes in the H.C.P. Beryllium, Metallofiz. Noveishie Tekhnol., 37, No. 2: 149—155 (2015) (in Russian)


REFERENCES
  1. G. A. Sernyaev, Radiatsionnaya Povrezhdaemost' Berilliya (Radiation Damageability of Beryllium) (Yekaterinburg: 'Yekaterinburg': 2001) (in Russian); ISBN 5-88464-040-4.
  2. H. Krimmel and M. Fähnle, J. Nucl. Mater., 159, Nos. 1–2: 231 (1996). Crossref
  3. H. Krimmel and M. Fähnle, J. Nucl. Mater., 255, No. 1: 72 (1998). Crossref
  4. M. G. Ganchenkova and V. A. Borodin, Phys. Rev. B, 75: 054108 (2007). Crossref
  5. M. G. Ganchenkova, P. V. Vladimirov, and V. A. Borodin, J. Nucl. Mater., 386–388: 79 (2009). Crossref
  6. P. Zhang, J. Zhao, and B. Wen, J. Phys.: Condens. Matter, 24: 095004 (2012). Crossref
  7. P. Zhang, J. Zhao, and B. Wen, J. Nucl. Mater., 423, Nos. 1–3: 164 (2012). Crossref
  8. A. S. Bakai, A. N. Timoshevskii, and B. Z. Yanchitsky, Low Temp. Phys., 37, No. 10: 791 (2011). Crossref
  9. A. S. Bakai, A. N. Timoshevskii, and B. Z. Yanchitsky, arXiv:1111.4138.
  10. C. Björkas, Interatomic Potentials for Fusion Reactor Material Simulations (Thesis … for the Degree of Doctor of Philosophy) (Helsinki: 2009); ISBN 978-952-10-5642-0.
  11. C. Björkas, N. Juslin, H. Timkó, K. Vörtler, K. Nordlund, K. Henriksson, and P. Erhart, J. Phys.: Condens. Matter, 21, No. 44: 445002 (2009). Crossref
  12. P. V. Vladimirov and A. Moeslang, J. Nucl. Mater., 442, Nos. 1–3: S694 (2013). Crossref
  13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21: 395502 (2009). Crossref
  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  15. M. Fuchs and M. Scheffler, Comput. Phys. Commun., 119, No. 1: 67 (1999). Crossref
  16. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbital's Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz Technische Universität: 2001); ISBN 3-9501031-1-2.