On the Issue of the Effective Mass of Structural Inhomogeneities of Domain Boundary in Uniaxial Ferromagnets

A. B. Shevchenko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 04.09.2014. Download: PDF

Based on the Thiele’s gyrotropic forces, the formalism allowing determining the effective mass of the domain-wall structure elements, i.e., vertical Bloch lines and Bloch points in uniaxial ferromagnets, is constructed. As determined, the effective mass of these magnetic inhomogeneities depends on the gyrotropic bend of the domain wall caused by their motion.

Key words: ferromagnet, magnetization, domain boundary, gyrotropic bend, effective mass, vertical Bloch line, Bloch point.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i03/0295.html

DOI: https://doi.org/10.15407/mfint.37.03.0295

PACS: 75.60.Ch, 75.70.Ak, 75.70.Kw, 75.75.Fk, 75.78.Fg, 85.70.Kh

Citation: A. B. Shevchenko, On the Issue of the Effective Mass of Structural Inhomogeneities of Domain Boundary in Uniaxial Ferromagnets, Metallofiz. Noveishie Tekhnol., 37, No. 3: 295—304 (2015) (in Russian)


REFERENCES
  1. A. P. Malozemoff and J. C. Slonczewski, Domennye Stenki v Materialakh s Tsilindricheskimi Magnitnymi Domenami [Magnetic Domain Walls in Bubble Materials] (Moscow: Mir: 1982) (Russian translation).
  2. V. F. Lisovskiy, Fizika Tsilindricheskikh Magnitnykh Domenov (Moscow: Sov. Radio: 1979) (in Russian).
  3. V. G. Bar'yakhtar and Yu. I. Gorobets, Tsilindricheskie Magnitnye Domeny i Ikh Reshetki (Kiev: Naukova Dumka: 1988) (in Russian).
  4. A. B. Shevchenko, G. G. Vlaykov, and M. Yu. Barabash, Strukturno-Razmernye i Kvantovye Effekty v Nanosistemakh s Parametrom Poryadka. Ferromagnitnye i Segnetoelektricheskie Materialy (Kiev: Akademperiodika: 2013) (in Russian).
  5. Yu. A. Kufaev and E. B. Sonin, ZhETF, 95, No. 4: 1523 (1989) (in Russian).
  6. V. L. Dorman, V. L. Sobolev, and A. B. Shevchenko, JMMM, 94, No. 3: 293 (1991). Crossref
  7. V. L. Dorman, V. L. Sobolev, and A. B. Shevchenko, JMMM, 124, Nos. 1–2: 221 (1993). Crossref
  8. A. K. Zvezdin and A. F. Popkov, ZhETF, 91, No. 5 (11): 1789 (1986).
  9. A. B. Shevchenko, Zhurnal Tekhnicheskoy Fiziki, 77, No. 10: 128 (2007).
  10. A. B. Shevchenko and M. Yu. Barabash, Nanoscale Res. Lett., 9, No. 1: 132 (2014). Crossref
  11. M. Klaui, C. A. F. Vaz, and J. A. C. Bland, Appl. Phys. Lett., 85: 5637 (2004). Crossref
  12. M. Laufenberg, D. Backes, and W. Buhrer, Appl. Phys. Lett., 88: 052507 (2004). Crossref
  13. Y. Nakatani, A. Thiaville, and J. Miltat, JMMM, 290–291, 750 (2005). Crossref
  14. N. Vukadinovic and F. Boust, Phys. Rev. B, 78, No. 18: 184411 (2008). Crossref
  15. A. A. Thiele, Phys. Rev. Lett., 30, No. 6: 230 (1973). Crossref
  16. A. B. Shevchenko and M. B. Shevchenko, Metallofiz. Noveishie Tekhnol., 34, No. 5: 589 (2012) (in Russian).
  17. A. A. Thiele, Phys. Rev. B, 14, No. 7: 3130 (1976). Crossref
  18. A. B. Shevchenko and M. Yu. Barabash, Fizika Nizkikh Temperatur, 37, No. 8: 867 (2011) (in Russian).
  19. A. B. Shevchenko and M. Yu. Barabash, Fizika Nizkikh Temperatur, 39, No. 2: 199 (2013) (in Russian).
  20. E. G. Galkina, B. A. Ivanov, and V. A. Stephanovich, JMMM, 118, No. 3: 373 (1993). Crossref
  21. V. G. Bar'yakhtar, ZhETF, 87, No. 4: 1501 (1984) (in Russian).
  22. E. Schlomann, IEEE Trans. Magn., 10, No. 1: 11 (1974). Crossref
  23. A. A. Thiele, J. Appl. Phys., 41, No. 3: 1139 (1970). Crossref
  24. A. P. Shpak, A. B. Shevchenko, and Yu. A. Kunitskiy, Metallofiz. Noveishie Tekhnol., 29, No. 12: 1579 (2007) (in Russian).
  25. L. D. Landau and E. M. Lifshitz, Phys. Zeitsch. der Sowjetunion, 8, No. 2: 153 (1935).