Magnetic Tunnel Contacts Based on Heusler Fe$_{2}$MnGa Alloy

Yu. V. Kudryavtsev$^{1}$, V. M. Uvarov$^{1}$, J. Dubowik$^{2}$, Yu. B. Skirta$^{3}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute of Molecular Physics PAN, ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
$^{3}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 25.11.2014; final version - 29.01.2015. Download: PDF

Magnetic tunnel junctions (MTJ) with Heusler Fe$_{2}$MnGa-alloy and Ni$_{80}$Fe$_{20}$-alloy films as ferromagnetic electrodes and MgO-films as barrier layer are fabricated and investigated. As shown, the structure of Fe$_{2}$MnGa-alloy films effects significantly on the tunnel magnetoresistance value. Obtained values of tunnel magnetoresistance (4—20\%) at 293 K open the perspectives of practical applications of such MTJ as magnetic-field sensors.

Key words: magnetic properties, magnetoresistance, magnetic tunnel contacts, metallic heterostructures, thin films.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i03/0305.html

DOI: https://doi.org/10.15407/mfint.37.03.0305

PACS: 68.65.Ac, 71.20.Be, 73.40.Rw, 75.47.Np, 75.50.Bb, 75.70.Cn, 85.75.Ss

Citation: Yu. V. Kudryavtsev, V. M. Uvarov, J. Dubowik, and Yu. B. Skirta, Magnetic Tunnel Contacts Based on Heusler Fe$_{2}$MnGa Alloy, Metallofiz. Noveishie Tekhnol., 37, No. 3: 305—316 (2015) (in Ukrainian)


REFERENCES
  1. M. Julliere, Phys. Lett., 54A, 225 (1975). Crossref
  2. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater., 139: L231 (1995). Crossref
  3. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett., 74, 3273 (1995). Crossref
  4. I. Galanakis and Ph. Mavropoulos, J. Phys.: Condensed Matter, 19: 315213 (2007). Crossref
  5. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Appl. Phys. Lett., 89: 252508 (2006). Crossref
  6. Z. Gercsi, A. Rajanikanth, Y. K. Takahashi, K. Hono, M. Kikuchi, N. Tezuka, and K. Inomata, Appl. Phys. Lett., 89: 082512 (2006). Crossref
  7. Y. Sakuraba, J. Nakata, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett., 88: 022503 (2006). Crossref
  8. A. T. Zayak, P. Entel, K. M. Rabe, W. A. Adeagbo, and M. Acet, Phys. Rev. B, 72: 054113 (2005). Crossref
  9. Y. V. Kudryavtsev, N. V. Uvarov, V. N. Iermolenko, I. N. Glavatskij, and J. Dubowik, Acta Mater., 60: 4780 (2012). Crossref
  10. W. Zhu, E. K. Liu, L. Feng, X. D. Tang, J. L. Chen, G. H. Wu et al., Appl. Phys. Lett., 95: 222512 (2009). Crossref
  11. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien, Austria: Karl-Heinz Schwarz Techn. Universitat Wien: 2001).
  12. N. V. Volkov, Uspekhi Fizicheskikh Nauk, 182, No. 3: 263 (2012) (in Russian). Crossref
  13. J. G. Simmons, J. Appl. Phys., 34: 238 (1963). Crossref