Thermoinductive Decomposition of Hydrated Iron Trifluoride in a Stream of Argon

V. V. Moklyak$^{1}$, V. O. Kotsyubynsky$^{2}$, P. I. Kolkovskyy$^{3}$, A. B. Grubyak$^{2}$, L. Z. Zbigley$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
$^{3}$Joint educational-and-scientific laboratory of magnetic films of the G.V. Kurdyumov Institute for Metal Physics NAS of Ukraine and Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 28.01.2015; final version - 16.02.2015. Download: PDF

The article deals with the conditions for anhydrous iron fluoride obtaining by thermal decomposition of iron trifluoride trihydrate. The basis of the $\beta$-FeF$_{3} \cdot$ 3H$_{2}$O crystal structure is outlined. Temperature limits of the $\beta$-FeF$_{3} \cdot$ 3H$_{2}$O phase decomposition as well as products of its dehydration are established. Nanocrystalline iron trifluoride of rhombic modification is obtained.

Key words: FeF$_{3}$, crystal structure, thermal decomposition, Mössbauer spectroscopy, thermogravimetric analysis.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i03/0355.html

DOI: https://doi.org/10.15407/mfint.37.03.0355

PACS: 61.05.Qr, 61.68.+n, 75.20.Ck, 76.80.+y, 81.07.Bc, 81.70.Pg, 82.47.Aa

Citation: V. V. Moklyak, V. O. Kotsyubynsky, P. I. Kolkovskyy, A. B. Grubyak, and L. Z. Zbigley, Thermoinductive Decomposition of Hydrated Iron Trifluoride in a Stream of Argon, Metallofiz. Noveishie Tekhnol., 37, No. 3: 355—365 (2015) (in Ukrainian)


REFERENCES
  1. Ting Li, Lei Li, Yu L. Cao, Xin P. Ai, and Han X. Yang, J. Phys. Chem. C, 114, No. 7: 3190 (2010). Crossref
  2. N. Louvain, A. Fakhry, P. Bonnet, M. El-Ghozzi, K. Guerin, M. T. Sougrati, J. C. Jumas, and P. Willmann, Cryst. Eng. Comm., 15, No. 18: 3664 (2013). Crossref
  3. S. Rüdiger, U. Grob, and E. Kemnitz, J. Fluorine Chem., 128: 353 (2007). Crossref
  4. E. G. Rakov and V. V. Teslenko, Pirogidroliz Neorganicheskikh Ftoridov (Moscow: Energoatomizdat: 1987) (in Russian).
  5. M. C. Morris, F. H. McMurdie, H. Eloise, and B. Paretzkin, Standard X-Ray Diffraction Powder Patterns. Monograph 25–Section 17 (Washington, DC: National Bureau of Standards: 1980), p. 114. Crossref
  6. G. Teufer, Acta Crystallogr., 17: 1480 (1964). Crossref
  7. Li Liu, Haipeng Guo, Meng Zhou, Qiliang Wei, Zhenhua Yang, Hongbo Shu, Xiukang Yang, Jinli Tan, Zichao Yan, and Xianyou Wang, J. Power Sources, 238: 501 (2013). Crossref
  8. S. T. Myung, S. Sakurada, H. Yashiro, and Y. K. Sun, J. Power Sources, 223: 1 (2013). Crossref
  9. I. Dézsi, P. J. Ouseph, and P. M. Thomas, J. Inorg. Nucl. Chem., 36: 833 (1974). Crossref
  10. Y. Calage, M. Leblanc, G. Ferey, and F. Varret, J. Magn. Magn. Mater., 43: 195 (1984). Crossref
  11. J. M. Greneche, J. Non-Cryst. Solids, 287: 37 (2001). Crossref
  12. M. Eibschütz, M. E. Lines, L. G. Van Uitert, H. J. Guggenheim, and G. J. Zydzik, Phys. Rev. B, 24, No. 5: 2343 (1981). Crossref
  13. H. Guérault, M. Tamine, and J. M. Greneche, J. Phys. Condensed Matter, 12: 9497 (2000). Crossref
  14. V. P. Ivanitskiy, Mineralogicheskiy Zhurnal, 34, No. 1: 35 (2012) (in Russian).