Loading [MathJax]/jax/output/HTML-CSS/jax.js

Thermoinductive Decomposition of Hydrated Iron Trifluoride in a Stream of Argon

V. V. Moklyak1, V. O. Kotsyubynsky2, P. I. Kolkovskyy3, A. B. Grubyak2, L. Z. Zbigley1

1G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
2Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
3Joint educational-and-scientific laboratory of magnetic films of the G.V. Kurdyumov Institute for Metal Physics NAS of Ukraine and Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 28.01.2015; final version - 16.02.2015. Download: PDF

The article deals with the conditions for anhydrous iron fluoride obtaining by thermal decomposition of iron trifluoride trihydrate. The basis of the β-FeF3 3H2O crystal structure is outlined. Temperature limits of the β-FeF3 3H2O phase decomposition as well as products of its dehydration are established. Nanocrystalline iron trifluoride of rhombic modification is obtained.

Key words: FeF3, crystal structure, thermal decomposition, Mössbauer spectroscopy, thermogravimetric analysis.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i03/0355.html

DOI: https://doi.org/10.15407/mfint.37.03.0355

PACS: 61.05.Qr, 61.68.+n, 75.20.Ck, 76.80.+y, 81.07.Bc, 81.70.Pg, 82.47.Aa

Citation: V. V. Moklyak, V. O. Kotsyubynsky, P. I. Kolkovskyy, A. B. Grubyak, and L. Z. Zbigley, Thermoinductive Decomposition of Hydrated Iron Trifluoride in a Stream of Argon, Metallofiz. Noveishie Tekhnol., 37, No. 3: 355—365 (2015) (in Ukrainian)


REFERENCES
  1. Ting Li, Lei Li, Yu L. Cao, Xin P. Ai, and Han X. Yang, J. Phys. Chem. C, 114, No. 7: 3190 (2010). Crossref
  2. N. Louvain, A. Fakhry, P. Bonnet, M. El-Ghozzi, K. Guerin, M. T. Sougrati, J. C. Jumas, and P. Willmann, Cryst. Eng. Comm., 15, No. 18: 3664 (2013). Crossref
  3. S. Rüdiger, U. Grob, and E. Kemnitz, J. Fluorine Chem., 128: 353 (2007). Crossref
  4. E. G. Rakov and V. V. Teslenko, Pirogidroliz Neorganicheskikh Ftoridov (Moscow: Energoatomizdat: 1987) (in Russian).
  5. M. C. Morris, F. H. McMurdie, H. Eloise, and B. Paretzkin, Standard X-Ray Diffraction Powder Patterns. Monograph 25–Section 17 (Washington, DC: National Bureau of Standards: 1980), p. 114. Crossref
  6. G. Teufer, Acta Crystallogr., 17: 1480 (1964). Crossref
  7. Li Liu, Haipeng Guo, Meng Zhou, Qiliang Wei, Zhenhua Yang, Hongbo Shu, Xiukang Yang, Jinli Tan, Zichao Yan, and Xianyou Wang, J. Power Sources, 238: 501 (2013). Crossref
  8. S. T. Myung, S. Sakurada, H. Yashiro, and Y. K. Sun, J. Power Sources, 223: 1 (2013). Crossref
  9. I. Dézsi, P. J. Ouseph, and P. M. Thomas, J. Inorg. Nucl. Chem., 36: 833 (1974). Crossref
  10. Y. Calage, M. Leblanc, G. Ferey, and F. Varret, J. Magn. Magn. Mater., 43: 195 (1984). Crossref
  11. J. M. Greneche, J. Non-Cryst. Solids, 287: 37 (2001). Crossref
  12. M. Eibschütz, M. E. Lines, L. G. Van Uitert, H. J. Guggenheim, and G. J. Zydzik, Phys. Rev. B, 24, No. 5: 2343 (1981). Crossref
  13. H. Guérault, M. Tamine, and J. M. Greneche, J. Phys. Condensed Matter, 12: 9497 (2000). Crossref
  14. V. P. Ivanitskiy, Mineralogicheskiy Zhurnal, 34, No. 1: 35 (2012) (in Russian).