The Symmetry of Rare-Earth Metals. The Paradox of Ce and Its Alloys. Quantum Theory. I. Ce

O. I. Mitsek, V. M. Pushkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 29.01.2015. Download: PDF

The symmetry of rare-earth metals (REM) and f.c.c.-Ce ‘paradox’ are calculated by means of the method of many-electron operator spinors (MEOS). Spin and orbital MEOS factors with [0001] axis of quantization of the angular moment $J$ are responsible for hexagonal deformation $\Delta(c/a) \propto J^{2}$. Indirect covalent $4f—4f$ bond via band fermions adds the bond energy $E_{4f} \propto n_{f}$. Covalent electron collectivization ($n_{f} = 2$) for Ce($4f^{2}$) gives $J \rightarrow 0$ and $\Delta(c/a) = 0$. In the REM-Ce, there is instability of $4f$-shell contributing to the appearance of $5d$-states with amplitude $\xi_{d}(T)$. Covalent bond $\Gamma^{dd}(k)$ (in the MEOS method) appears because of the chemical-bond fluctuations (CBF) for temperature $T > T_{+}$ in the form of $\xi_{d} (T > T_{+})$ jump. Hysteresis of the f.c.c.—f.c.c. $\alpha-\gamma$-transition is caused by the band—covalent bond $\gamma_{b-c}$. Its maximum width $\Delta T_{h} \propto \gamma_{b-c}^{2/3}$ determines jumps of the volume $\Delta \omega(T_{+})$, entropy $\Delta S(T_{+})$, electrical resistance (ER) $\Delta R(T_{+})$, etc. Particularly, the ER jump $\Delta R(T_{+}) \propto \Delta T_{h}$. The experimental data are interpreted by the use of results of calculation.

Key words: hexagonal distortions of REM, f.c.c.—f.c.c.-transition of Ce, fluctuations of chemical bonds, $4f—5d$-transition, volume jump, entropy jump, ER jump, wave function amplitude jump.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i04/0433.html

DOI: https://doi.org/10.15407/mfint.37.04.0433

PACS: 61.50.Ks, 71.20.Eh, 72.15.Eb, 75.10.Dg, 75.30.Et, 75.30.Kz, 75.30.Mb

Citation: O. I. Mitsek and V. M. Pushkar, The Symmetry of Rare-Earth Metals. The Paradox of Ce and Its Alloys. Quantum Theory. I. Ce, Metallofiz. Noveishie Tekhnol., 37, No. 4: 433—448 (2015)


REFERENCES
  1. S. V. Vonsovsky, Magnetism (Moscow: Nauka: 1971) (in Russian).
  2. Yu. P. Irkhin and V. Yu. Irkhin, Elektronnoe Stroenie i Fizicheskie Svoystva Perekhodnykh Metallov (Electron Structure and Physical Properties of Transition Metals) (Sverdlovsk: Ural State University: 1989) (in Russian).
  3. A. I. Mitsek and V. N. Pushkar', Real'nye Kristally s Magnitnym Poryadkom (Real Crystals with Magnetic Order) (Kiev: Naukova Dumka: 1978) (in Russian).
  4. O. I. Mitsek, Uspehi Fiziki Metallov, 13, No. 4: 345 (2012) (in Russian). Crossref
  5. G. P. Brekharya, O. A. Kharitonova, and T. V. Gulyayeva, Uspehi Fiziki Metallov, 15, No. 1: 35 (2014) (in Russian). Crossref
  6. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol., 34, No. 6: 721 (2012) (in Russian).
  7. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol., 36, No. 1: 103 (2014) (in Russian). Crossref
  8. Yu. M. Koval' and S. O. Ponomaryova, Metallofiz. Noveishie Tekhnol., 34, No. 3: 359 (2012) (in Russian).
  9. K. N. R. Taylor and M. I. Darby, Physics of Rare Earth Solids (London: Chapman and Hall LTD: 1972).
  10. K. P. Belov, M. A. Belyanchikova, R. Z. Levitin, and S. A. Nikitin, Redkozemel'nye Ferro- i Antiferromagnetiki (Rare-Earth Ferro- and Antiferromagnetics) (Moscow: Nauka: 1965) (in Russian).
  11. K. P. Belov, Redkozemel'nye Magnetiki i Ikh Primenenie (Rare-Earth Magnetics and Their Application) (Moscow: Nauka: 1980) (in Russian).
  12. F. H. Spedding, A. H. Daane, and K. W. Herrmann, Metals J., 9, No. 4: 895 (1957).
  13. N. N. Sirota and A. V. Morozov, Doklady RAN, 402, No. 5: 2005 (613) (in Russian).
  14. R. W. Major and T. E. Leinhardt, J. of Physics and Chemistry of Solids, 28, No. 9: 1669 (1967). Crossref
  15. C. J. Boehlert, J. D. Farr, R. K. Schulze, R. A. Pereyra, and J. A. Archuleta, Philosophical Magazine, 83, No. 14: 1735 (2003). Crossref
  16. J. M. Leger, Phys. Lett., 57 A, No. 2: 191 (1976).
  17. R. F. Gempel, D. R. Gustafson, and J. D. Willenberg, Phys. Rev. B, 5, No. 6: 2082 (1972). Crossref
  18. E. King, J. A. Lee, I. R. Harris, and T. F. Smith, Phys. Rev. B, 1, No. 4: 1380 (1970). Crossref
  19. R. Ramirez and L. M. Falikov, Phys. Rev. B, 3, No. 8: 2425 (1971). Crossref
  20. J. Ramakrishnan and G. C. Kennedy, J. Appl. Phys., 51, No. 10: 2586 (1980). Crossref
  21. A. V. Nikolaev and A. V. Ivashchenko, Uspekhi Fizicheskikh Nauk, 182, No. 7: 701 (2012) (in Russian). Crossref
  22. N. Lanata, Y.-X. Jao, C.-Z. Wang, K.-M. Ho, J. Schmalian, K. Haule, and G. Kotliar, Phys. Rev. Lett., 111, No.19: 196801 (2013). Crossref
  23. Y. Pan, N. Nilius, H.-J. Freund, J. Paier, Ch. Penschke, and J. Sauer, Phys. Rev. Lett., 111, No. 20: 206101 (2013). Crossref
  24. G. Li, Y. Y. Wang, P. K. Liaw, Y. C. Li, and R. P. Liu, Phys. Rev. Lett., 109, No. 12: 125501 (2012). Crossref